Mechanically Robust BiSbTe Alloys with Superior Thermoelectric Performance: A Case Study of Stable Hierarchical Nanostructured Thermoelectric Materials

Bismuth telluride based thermoelectric materials have been commercialized for a wide range of applications in power generation and refrigeration. However, the poor machinability and susceptibility to brittle fracturing of commercial ingots often impose significant limitations on the manufacturing process and durability of thermoelectric devices. In this study, melt spinning combined with a plasma-activated sintering (MS-PAS) method is employed for commercial p-type zone-melted (ZM) ingots of Bi_0.5Sb_1.5Te_3. This fast synthesis approach achieves hierarchical structures and in-situ nanoscale precipitates, resulting in the simultaneous improvement of the thermoelectric performance and the mechanical properties. Benefitting from a strong suppression of the lattice thermal conductivity, a peak ZT of 1.22 is achieved at 340 K in MS-PAS synthesized structures, representing about a 40% enhancement over that of ZM ingots. Moreover, MS-PAS specimens with hierarchical structures exhibit superior machinability and mechanical properties with an almost 30% enhancement in their fracture toughness, combined with an eightfold and a factor of six increase in the compressive and flexural strength, respectively. Accompanied by an excellent thermal stability up to 200 °C for the MS-PAS synthesized samples, the MS-PAS technique demonstrates great potential for mass production and large-scale applications of Bi_2Te_3 related thermoelectrics.

[1]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[2]  P. Rogl,et al.  Mechanical Properties of Skutterudites , 2011 .

[3]  S. Joshi,et al.  Size-effects in textural strengthening of hierarchical magnesium nano-composites , 2012 .

[4]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[5]  R. Kaner,et al.  Hardness and fracture toughness of thermoelectric La3−xTe4 , 2014, Journal of Materials Science.

[6]  Dawei Liu,et al.  BiSbTe‐Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties , 2013 .

[7]  E. Case,et al.  Thermal Fatigue of Cast and Hot-Pressed Lead-Antimony-Silver-Tellurium (LAST) Thermoelectric Materials , 2013, Journal of Electronic Materials.

[8]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[9]  Gloria J. Lehr,et al.  Room temperature mechanical properties of polycrystalline YbAl3, a promising low temperature thermoelectric material , 2013 .

[10]  Jooho Moon,et al.  Thermoelectric and mechanical properties of Zn4Sb3 polycrystals sintered by spark plasma sintering , 2012 .

[11]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[12]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[13]  S. Wiederhorn Brittle Fracture and Toughening Mechanisms in Ceramics , 1984 .

[14]  Qingjie Zhang,et al.  High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering , 2013, Journal of Materials Science.

[15]  Hsin Wang,et al.  Strength of N‐ and P‐Type Skutterudites1 , 2010 .

[16]  Han Li,et al.  High-Temperature Mechanical and Thermoelectric Properties of p-Type Bi0.5Sb1.5Te3 Commercial Zone Melting Ingots , 2014, Journal of Electronic Materials.

[17]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[18]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[19]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[20]  H. Kabelka,et al.  Mechanical properties of filled antimonide skutterudites , 2010 .

[21]  H. Ledbetter,et al.  Elastic‐constant variability in stainless‐steel 304 , 1980 .

[22]  B. Hammouda,et al.  The microstructure network and thermoelectric properties of bulk (Bi,Sb)2Te3 , 2012 .

[23]  J. Kruzic,et al.  Fracture Toughness of Co4Sb12 and In0.1Co4Sb12 Thermoelectric Skutterudites Evaluated by Three Methods , 2013 .

[24]  Qingjie Zhang,et al.  The role of Ga in Ba0.30GaxCo4Sb12+x filled skutterudites , 2012 .

[25]  Y. Shtern,et al.  Thermal expansion of bismuth telluride , 2011 .

[26]  D. Chateigner,et al.  Ca3Co4O9 ceramics consolidated by SPS process: Optimisation of mechanical and thermoelectric properties , 2010 .

[27]  Terry M. Tritt,et al.  Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .

[28]  E. Case,et al.  Room-Temperature Mechanical Properties and Slow Crack Growth Behavior of Mg2Si Thermoelectric Materials , 2012, Journal of Electronic Materials.

[29]  K Ghavami,et al.  Mechanical properties of functionally graded hierarchical bamboo structures. , 2011, Acta biomaterialia.

[30]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[31]  Qingjie Zhang,et al.  Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure , 2008 .

[32]  Xinbing Zhao,et al.  Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi,Sb)2Te3 thermoelectric materials , 2013 .

[33]  D. Vashaee,et al.  Simultaneous enhancement of mechanical and thermoelectric properties of polycrystalline magnesium silicide with conductive glass inclusion , 2014 .

[34]  M. Naraghi,et al.  Multiscale Experimental Mechanics of Hierarchical Carbon‐Based Materials , 2012, Advanced materials.

[35]  Hao Li,et al.  High thermoelectric performance via hierarchical compositionally alloyed nanostructures. , 2013, Journal of the American Chemical Society.

[36]  Bharat Bhushan,et al.  Hierarchical structure and mechanical properties of nacre: a review , 2012 .

[37]  S. Joshi,et al.  Hierarchical magnesium nano-composites for enhanced mechanical response , 2010 .

[38]  Y. P. Chen,et al.  Thermal expansion coefficients of Bi2Se3 and Sb2Te3 crystals from 10 K to 270 K , 2011, 1112.1608.

[39]  C. Uher,et al.  Transport and mechanical properties of Yb-filled skutterudites , 2009 .

[40]  M. Liu,et al.  Enhanced thermoelectric and mechanical performance of polycrystalline p-type Bi0.5Sb1.5Te3 by a traditional physical metallurgical strategy , 2014 .

[41]  C. Uher,et al.  Optimized Thermoelectric Properties of Sb-Doped Mg2(1+z)Si0.5–ySn0.5Sby through Adjustment of the Mg Content , 2011 .

[42]  David J. Miller,et al.  Thermoelectric and mechanical properties of melt spun and spark plasma sintered n-type Yb- and Ba-filled skutterudites , 2013 .

[43]  Detection of internal cracks and ultrasound characterization of nanostructured Bi₂Te₃-based thermoelectrics via acoustic microscopy. , 2011, Ultrasonics.

[44]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[45]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[46]  Eduardo Saiz,et al.  Designing highly toughened hybrid composites through nature-inspired hierarchical complexity , 2009 .

[47]  Q. Lu,et al.  Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping , 2013 .

[48]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[49]  Han Li,et al.  Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure , 2007 .

[50]  M. Kanatzidis,et al.  Fracture mode, microstructure and temperature-dependent elastic moduli for thermoelectric composites of PbTe–PbS with SiC nanoparticle additions , 2013 .

[51]  André R Studart,et al.  Towards High‐Performance Bioinspired Composites , 2012, Advanced materials.

[52]  Qingjie Zhang,et al.  Enhanced thermoelectric and mechanical properties of Te-substituted skutterudite via nano-TiN dispersion , 2012 .

[53]  Jingjing Xu,et al.  Enhanced Figure-of-Merit in Se-Doped p-Type AgSbTe2 Thermoelectric Compound , 2010 .

[54]  Qingjie Zhang,et al.  Improved Thermoelectric Performance and Mechanical Properties of Nanostructured Melt-Spun β-Zn4Sb3 , 2010 .

[55]  H. Schock,et al.  Weibull analysis of the biaxial fracture strength of a cast p-type LAST-T thermoelectric material , 2006 .

[56]  L. Stil’bans,et al.  Physical problems of thermoelectricity , 1959 .

[57]  Z. Dashevsky,et al.  Mechanical properties of PbTe-based thermoelectric semiconductors , 2008 .

[58]  Tiejun Zhu,et al.  Shifting up the optimum figure of merit of p -type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction , 2014 .

[59]  F. Ren,et al.  Thermoelectric and mechanical properties of multi-walled carbon nanotube doped Bi0.4Sb1.6Te3 thermoelectric material , 2013 .

[60]  Hsin Wang,et al.  Temperature Dependent Tensile Fracture Stress of n- and p-Type Filled-Skutterudite Materials , 2011 .

[61]  E. Ma,et al.  Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. , 2013, Nature materials.

[62]  A. S. Ivanov,et al.  Thermoelectric and mechanical properties of the Bi0.5Sb1.5Te3 solid solution prepared by melt spinning , 2013, Inorganic Materials.

[63]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[64]  Adam J. Stevenson,et al.  Strong, tough and stiff bioinspired ceramics from brittle constituents. , 2014, Nature materials.

[65]  S. Nutt,et al.  Mechanical Properties of Thermoelectric Skutterudites , 2008 .

[66]  C. Uher,et al.  Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi , 2011 .

[67]  Jean-Michel Leger,et al.  Synthesis and Design of Superhard Materials , 2001 .

[68]  Tiejun Zhu,et al.  Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top down route and improved thermoelectric properties , 2010 .

[69]  H J Goldsmid,et al.  The use of semiconductors in thermoelectric refrigeration , 1954 .

[70]  D. Morelli,et al.  Room temperature mechanical properties of natural-mineral-based thermoelectrics , 2013, Journal of Materials Science.

[71]  H. Schock,et al.  Hardness as a function of composition for n-type LAST thermoelectric material , 2008 .

[72]  R. Masut,et al.  Thermoelectric and Mechanical Properties of Novel Hot-Extruded PbTe n-Type Material , 2012, Journal of Electronic Materials.