Phenylnitrene Radical Cation Rearrangements.

The electronic structure and the rearrangements of the phenylnitrene radical cation C6H5N.+ 2.+ have been investigated at DFT and CASPT2(7,9) levels of theory. The 2B2 state has the lowest energy of five identified electronic states, and it can undergo ring expansion to the 1-azacycloheptetetraene radical cation 4.+ with an activation energy of ca. 28 kcal/mol. Ring opening and recyclization provide a route to 5-cyanocyclopentadiene radical cation 8.+, which may undergo facile 1,5-hydrogen shifts. The 2-, 3-, and 4-pyridylcarbene radical cations 31.+, 35.+ , and 39.+ interconvert with the phenylnitrene radical cation via azacycloheptatetraenes with activation barriers <35 kcal/mol. The carbene-carbene and carbene-nitrene rearrangements, ring expansions, ring contractions, ring openings (e.g., to cyanopentadienylidene 28.+), and cyclizations taking place in all these radical cations are completely analogous to the thermal and photochemical rearrangements.

[1]  D. Bégué,et al.  Triplet States of Tetrazoles, Nitrenes, and Carbenes from Matrix Photolysis of Tetrazoles, and Phenylcyanamide as a Source of Phenylnitrene. , 2018, The journal of physical chemistry. A.

[2]  B. Freiermuth,et al.  Pyrolysis of benzotriazoles. 1-Acyl- and 1-alkoxycarbonylbenzotriazoles: Hetero-Wolff rearrangement to N-acyl- and N-alkoxycarbonyl-fulvenimines and free radical routes to cyanocyclopentadienes , 2017 .

[3]  D. Bégué,et al.  Iminocyclohexadienylidenes: Carbenes or Diradicals? The Hetero-Wolff Rearrangement of Benzotriazoles to Cyanocyclopentadienes and 1H-Benzo[b]azirines. , 2017, Journal of Physical Chemistry A.

[4]  C. Wentrup Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles. , 2017, Chemical reviews.

[5]  D. Bégué,et al.  Nitrene–Nitrene Rearrangement under Thermal, Photochemical, and Electron‐Impact Conditions: The 2‐Azidopyridines/Tetrazolo[1,5‐a]pyridines , 2016 .

[6]  P. Bednarek,et al.  Phenylnitrene, phenylcarbene, and pyridylcarbenes. Rearrangements to cyanocyclopentadiene and fulvenallene. , 2014, Journal of the American Chemical Society.

[7]  D. Falvey,et al.  Nitrenes and Nitrenium Ions: Falvey/Nitrenes and Nitrenium Ions , 2013 .

[8]  M. Winkler Singlet-triplet energy splitting and excited states of phenylnitrene. , 2008, Journal of Physical Chemistry A.

[9]  Yuyang Li,et al.  Identification and Chemistry of Phenylnitrene in Premixed Pyridine/Oxygen/Argon Flame with Tunable Synchrotron Photoionization , 2007 .

[10]  S. Yamabe,et al.  Revisiting Hydrogen [1,5] Shifts in Cyclopentadiene and Cycloheptatriene as Bimolecular Reactions. , 2005, Journal of Chemical Theory and Computation.

[11]  M. Stefano,et al.  Reactions of N+ ions with benzene: a theoretical study on the C6NH6+ potential energy surface , 2004 .

[12]  F. Chau,et al.  First determination of ionization energies of phenylnitrene , 2003 .

[13]  M. Stefano,et al.  Experimental and theoretical investigation of the production of cations containing C–N bonds in the reaction of benzene with atomic nitrogen ions , 2003 .

[14]  P. Bednarek,et al.  3-pyridylcarbene and 3-pyridylnitrene: ring opening to nitrile ylides. , 2003, Journal of the American Chemical Society.

[15]  B. A. Hess,et al.  [1,5] Sigmatropic hydrogen shifts in cyclic 1,3-dienes. , 2002, The Journal of organic chemistry.

[16]  W. T. Borden,et al.  Why Are Nitrenes More Stable than Carbenes? An Ab Initio Study , 1998 .

[17]  T. Miller,et al.  Laser-induced fluorescence spectrum of the cyanocyclopentadienyl radical: a band system long attributed to triplet phenylnitrene , 1990 .

[18]  C. Wentrup,et al.  ESR Observation of Thermally Produced Triplet Nitrenes and Photochemically Produced Triplet Cycloheptatrienylidenes , 1986 .

[19]  H. Murai,et al.  Electron spin resonance of iminocyclohexadienylidenes: photoinduced triplet geometrical isomerization , 1980 .

[20]  A. Maquestiau,et al.  Etude Structurale de Cations‐Radicaux , 1978 .

[21]  A. Siegel Rearrangement ions—I: Mass spectrum of thionylaniline-1-13C , 1970 .

[22]  J. Henion,et al.  Hydrogen randomization in phenyl azide , 1970 .

[23]  B. E. Job Rearrangement ions in the mass spectrum of thionylaniline , 1967 .

[24]  G. Schroll,et al.  Electron impact studies—IX : Mass spectra of arylsulphinylamines skeletal rearrangement on electron impact☆ , 1967 .

[25]  W. Waters,et al.  314. Pyrolysis of organic azides: a mechanistic study , 1962 .