New V(IV)-based metal-organic framework having framework flexibility and high CO2 adsorption capacity.

A vanadium based metal-organic framework (MOF), VO(BPDC) (BPDC(2-) = biphenyl-4,4'-dicarboxylate), adopting an expanded MIL-47 structure type, has been synthesized via solvothermal and microwave methods. Its structural and gas/vapor sorption properties have been studied. This compound displays a distinct breathing effect toward certain adsorptives at workable temperatures. The sorption isotherms of CO(2) and CH(4) indicate a different sorption behavior at specific temperatures. In situ synchrotron X-ray powder diffraction measurements and molecular simulations have been utilized to characterize the structural transition. The experimental measurements clearly suggest the existence of both narrow pore and large pore forms. A free energy profile along the pore angle was computationally determined for the empty host framework. Apart from a regular large pore and a regular narrow pore form, an overstretched narrow pore form has also been found. Additionally, a variety of spectroscopic techniques combined with N(2) adsorption/desorption isotherms measured at 77 K demonstrate that the existence of the mixed oxidation states V(III)/V(IV) in the titled MOF structure compared to pure V(IV) increases the difficulty in triggering the flexibility of the framework.

[1]  F. Kapteijn,et al.  Interplay of metal node and amine functionality in NH2-MIL-53: modulating breathing behavior through intra-framework interactions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[2]  M. A. van der Veen,et al.  NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. , 2012, Journal of the American Chemical Society.

[3]  A. Ghoufi,et al.  Large breathing of the MOF MIL-47(VIV) under mechanical pressure: a joint experimental–modelling exploration , 2012 .

[4]  A. Vimont,et al.  Influence of the Oxidation State of the Metal Center on the Flexibility and Adsorption Properties of a Porous Metal Organic Framework: MIL-47(V) , 2011 .

[5]  Shyam Biswas,et al.  New functionalized flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) solids: syntheses, characterization, sorption, and breathing behavior. , 2011, Inorganic chemistry.

[6]  C. Serre,et al.  Influence of the Organic Ligand Functionalization on the Breathing of the Porous Iron Terephthalate Metal Organic Framework Type Material upon Hydrocarbon Adsorption , 2011 .

[7]  François-Xavier Coudert,et al.  Mechanism of Breathing Transitions in Metal–Organic Frameworks , 2011 .

[8]  Joachim Sauer,et al.  Pyrazolate-based cobalt(II)-containing metal-organic frameworks in heterogeneous catalytic oxidation reactions: elucidating the role of entatic states for biomimetic oxidation processes. , 2011, Chemistry.

[9]  A. Slawin,et al.  Synthesis, characterisation and adsorption properties of microporous scandium carboxylates with rigid and flexible frameworks , 2011 .

[10]  F. Kapteijn,et al.  Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption , 2011 .

[11]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[12]  D. D. De Vos,et al.  Separation of styrene and ethylbenzene on metal-organic frameworks: analogous structures with different adsorption mechanisms. , 2010, Journal of the American Chemical Society.

[13]  J. Soler,et al.  Flexibility in a metal-organic framework material controlled by weak dispersion forces: the bistability of MIL-53(Al). , 2010, Angewandte Chemie.

[14]  Toon Verstraelen,et al.  TAMkin: A Versatile Package for Vibrational Analysis and Chemical Kinetics , 2010, J. Chem. Inf. Model..

[15]  F. Kapteijn,et al.  A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal-organic framework. , 2010, Physical chemistry chemical physics : PCCP.

[16]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[17]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[18]  François-Xavier Coudert,et al.  Stress-Based Model for the Breathing of Metal-Organic Frameworks. , 2010, The journal of physical chemistry letters.

[19]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[20]  Seth M. Cohen,et al.  Modulating metal-organic frameworks to breathe: a postsynthetic covalent modification approach. , 2009, Journal of the American Chemical Society.

[21]  François-Xavier Coudert,et al.  Breathing transitions in MIL-53(Al) metal-organic framework upon xenon adsorption. , 2009, Angewandte Chemie.

[22]  C. Serre,et al.  Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL-53(Fe). , 2009, Journal of the American Chemical Society.

[23]  D. D. De Vos,et al.  Framework breathing in the vapour-phase adsorption and separation of xylene isomers with the metal-organic framework MIL-53. , 2009, Chemistry.

[24]  C. Serre,et al.  Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. , 2009, Journal of the American Chemical Society.

[25]  M. Fröba,et al.  New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc = 2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-biphenyl dicarboxylate) , 2009 .

[26]  C. Serre,et al.  Estimation of the breathing energy of flexible MOFs by combining TGA and DSC techniques. , 2009, Chemical communications.

[27]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[28]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[29]  D. Vos,et al.  Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework , 2009 .

[30]  Xiaoping Wang,et al.  Crystallographic observation of dynamic gas adsorption sites and thermal expansion in a breathable fluorous metal-organic framework. , 2009, Angewandte Chemie.

[31]  A. Vimont,et al.  XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). , 2009, Dalton transactions.

[32]  J. Atwood,et al.  Flexible (breathing) interpenetrated metal-organic frameworks for CO2 separation applications. , 2008, Journal of the American Chemical Society.

[33]  C. Serre,et al.  Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53(Al, Cr). , 2008, Journal of the American Chemical Society.

[34]  C. Serre,et al.  Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation. , 2008, Journal of the American Chemical Society.

[35]  D. Neumann,et al.  Reversible structural transition in MIL-53 with large temperature hysteresis. , 2008, Journal of the American Chemical Society.

[36]  Gérard Férey,et al.  Flexible porous metal-organic frameworks for a controlled drug delivery. , 2008, Journal of the American Chemical Society.

[37]  A. Jacobson,et al.  Tossing and turning: guests in the flexible frameworks of metal(III) dicarboxylates. , 2008, Inorganic chemistry.

[38]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[39]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[40]  A. Jacobson,et al.  In(OH)BDC.0.75BDCH2 (BDC = Benzenedicarboxylate), a hybrid inorganic-organic vernier structure. , 2005, Journal of the American Chemical Society.

[41]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[42]  Allan J. Jacobson,et al.  Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions , 2005 .

[43]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[44]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[45]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[46]  Anthony L. Spek,et al.  Journal of , 1993 .

[47]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[48]  S. Kitagawa,et al.  Novel flexible frameworks of porous cobalt(II) coordination polymers that show selective guest adsorption based on the switching of hydrogen-bond pairs of amide groups. , 2002, Chemistry.

[49]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[50]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[51]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[52]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[53]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[54]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[55]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[56]  W. Łasocha,et al.  PROSZKI– a system of programs for powder diffraction data analysis , 1994 .

[57]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[58]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[59]  D. Louër,et al.  Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method , 1991 .