Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups

[1]  D. Plackett,et al.  Highly transparent films from carboxymethylated microfibrillated cellulose : The effect of multiple homogenization steps on key properties , 2011 .

[2]  Akira Isogai,et al.  TEMPO-oxidized cellulose nanofibers. , 2011, Nanoscale.

[3]  A. Isogai,et al.  Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. , 2010, Angewandte Chemie.

[4]  A. Isogai,et al.  Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. , 2010, Biomacromolecules.

[5]  M. Iotti,et al.  Efficient approach to high barrier packaging using microfibrillar cellulose and shellac , 2010 .

[6]  Mikael Gällstedt,et al.  Oxygen and oil barrier properties of microfibrillated cellulose films and coatings , 2010 .

[7]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[8]  Akira Isogai,et al.  Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. , 2009, Biomacromolecules.

[9]  A. Dufresne,et al.  Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. , 2009, Biomacromolecules.

[10]  Kristin Syverud,et al.  Strength and barrier properties of MFC films , 2009 .

[11]  Akira Isogai,et al.  Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. , 2009, Biomacromolecules.

[12]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[13]  De Chen,et al.  Deposition of Au colloids on plasmachemically modified carbon nanofibers , 2008 .

[14]  Magnus Norgren,et al.  The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[15]  M. Sreekala,et al.  Sorption characteristics of water, oil and diesel in cellulose nanofiber reinforced corn starch resin/ramie fabric composites , 2008 .

[16]  Gunnar Henriksson,et al.  An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers , 2007 .

[17]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[18]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[19]  F. Marken,et al.  A novel cation-binding TiO2 nanotube substrate for electro- and bioelectro-catalysis , 2005 .

[20]  Lihua Zhu,et al.  Examination of aqueous oxidized cellulose dispersions as a potential drug carrier. I. Preparation and characterization of oxidized cellulose-phenylpropanolamine complexes , 2004, AAPS PharmSciTech.

[21]  Akira Isogai,et al.  TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. , 2004, Biomacromolecules.

[22]  Redouane Borsali,et al.  Rodlike Cellulose Microcrystals: Structure, Properties, and Applications , 2004 .

[23]  Akira Isogai,et al.  Analyses of incinerated ash of paper sludge: comparison with incinerated ash of municipal solid waste , 2004 .

[24]  J. Lange,et al.  Recent innovations in barrier technologies for plastic packaging—a review , 2003 .

[25]  D. Gray,et al.  Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose , 1998 .

[26]  S. Creager,et al.  Conformational Rigidity in a Self-Assembled Monolayer of 4-Mercaptobenzoic Acid on Gold , 1995 .

[27]  R. Crooks,et al.  Molecular Interactions between Organized, Surface-Confined Monolayers and Vapor-Phase Probe Molecules. 5. Acid-Base Interactions , 1993 .

[28]  M. Porter,et al.  Deposition of metal overlayers at end-group-functionalized thiolate monolayers adsorbed at gold. 1. Surface and interfacial chemical characterization of deposited copper overlayers at carboxylic acid-terminated structures , 1992 .

[29]  R. Corn,et al.  Amide and Ester Surface Attachment Reactions for Alkanethiol Monolayers at Gold Surfaces As Studied by Polarization Modulation Fourier Transform Infrared Spectroscopy , 1992 .

[30]  T. Heinze,et al.  Zum Polyelektrolytverhalten einer C-6-substituierten Carboxycellulose im Vergleich zu Carboxymethylcellulose , 1990 .

[31]  S. Paoletti,et al.  Thermodynamics of the proton dissociation of natural polyuronic acids. , 1990, International journal of biological macromolecules.

[32]  Robert Evans,et al.  Cellulose molecular weights determined by viscometry , 1989 .

[33]  J. Morel,et al.  Comparison of the adsorption of maize root mucilage and polygalacturonic acid on montmorillonite homoionic to divalent lead and cadmium , 1987, Biology and Fertility of Soils.

[34]  C. Morvan,et al.  Titration of Isolated Cell Walls of Lemna minor L. , 1979, Plant physiology.

[35]  F. Morehead,et al.  Liquid Crystal Systems from Fibrillar Polysaccharides , 1959, Nature.

[36]  B. Volesky,et al.  Contribution of Sulfonate Groups and Alginate to Heavy Metal Biosorption by the Dry Biomass of Sargassum fluitans , 1996 .

[37]  M. Rinaudo,et al.  On the physicochemical properties of gellan gum , 1990, Biopolymers.

[38]  K. R. Sandberg,et al.  Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential , 1983 .