Graphene‐Contacted Ultrashort Channel Monolayer MoS2 Transistors

2D semiconductors are promising channel materials for field-effect transistors (FETs) with potentially strong immunity to short-channel effects (SCEs). In this paper, a grain boundary widening technique is developed to fabricate graphene electrodes for contacting monolayer MoS2 . FETs with channel lengths scaling down to ≈4 nm can be realized reliably. These graphene-contacted ultrashort channel MoS2 FETs exhibit superior performances including the nearly Ohmic contacts and excellent immunity to SCEs. This work provides a facile route toward the fabrication of various 2D material-based devices for ultrascaled electronics.

[1]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[2]  Yuchen Du,et al.  MoS2 Field-Effec t Transistors With Graphene/ Metal Heterocontacts , 2014 .

[3]  E. Vogel,et al.  Field-effect transistors based on wafer-scale, highly uniform few-layer p-type WSe2. , 2016, Nanoscale.

[4]  Zhixian Zhou,et al.  Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. , 2014, ACS nano.

[5]  Jian-Bai Xia,et al.  Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS2 Nanoflakes , 2014, Scientific Reports.

[6]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[7]  Dumitru Dumcenco,et al.  Electrical transport properties of single-layer WS2. , 2014, ACS nano.

[8]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[9]  Zhixian Zhou,et al.  High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. , 2014, Nano letters.

[10]  Qiyuan He,et al.  Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors. , 2016, Nano letters.

[11]  Jing Guo,et al.  On Monolayer ${\rm MoS}_{2}$ Field-Effect Transistors at the Scaling Limit , 2013, IEEE Transactions on Electron Devices.

[12]  Kenji Watanabe,et al.  Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching , 2016 .

[13]  Lianmao Peng,et al.  Scaling carbon nanotube complementary transistors to 5-nm gate lengths , 2017, Science.

[14]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[15]  P. Packan,et al.  Pushing the Limits , 1999, Science.

[16]  M. Steigerwald,et al.  Building high-throughput molecular junctions using indented graphene point contacts. , 2012, Angewandte Chemie.

[17]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[18]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[19]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[20]  Hao Wu,et al.  Toward barrier free contact to molybdenum disulfide using graphene electrodes. , 2015, Nano letters.

[21]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[22]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[23]  Jin-an Shi,et al.  Precisely Aligned Monolayer MoS2 Epitaxially Grown on h-BN basal Plane. , 2017, Small.

[24]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[25]  Gyu-Tae Kim,et al.  Few-layer black phosphorus field-effect transistors with reduced current fluctuation. , 2014, ACS nano.

[26]  Hua Yu,et al.  Patterned Peeling 2D MoS2 off the Substrate. , 2016, ACS applied materials & interfaces.

[27]  D. Muller,et al.  Large-scale chemical assembly of atomically thin transistors and circuits. , 2016, Nature nanotechnology.

[28]  M. Ratner,et al.  Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity , 2016, Science.

[29]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[30]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[31]  E. Wang,et al.  An Anisotropic Etching Effect in the Graphene Basal Plane , 2010, Advanced materials.

[32]  Hyunhyub Ko,et al.  Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors , 2010, Nature.

[33]  Jing Kong,et al.  MoS2 Field-Effect Transistor with Sub-10 nm Channel Length. , 2016, Nano letters.

[34]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[35]  E. Wang,et al.  Patterning Graphene with Zigzag Edges by Self‐Aligned Anisotropic Etching , 2011, Advanced materials.

[36]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[37]  Bin Liu,et al.  Hysteresis in single-layer MoS2 field effect transistors. , 2012, ACS nano.

[38]  Le Cai,et al.  Ultrashort Channel Length Black Phosphorus Field-Effect Transistors. , 2015, ACS nano.

[39]  Kai Yan,et al.  High‐Performance Photoresponsive Organic Nanotransistors with Single‐Layer Graphenes as Two‐Dimensional Electrodes , 2009 .

[40]  Peide D. Ye,et al.  ${\rm MoS}_{2}$ Field-Effect Transistors With Graphene/Metal Heterocontacts , 2014, IEEE Electron Device Letters.

[41]  Yan Xin,et al.  Ambipolar molybdenum diselenide field-effect transistors: field-effect and Hall mobilities. , 2014, ACS nano.

[42]  Chongwu Zhou,et al.  High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. , 2014, ACS nano.