Dispersionless integrable systems in 3D and Einstein-Weyl geometry

For several classes of second order dispersionless PDEs, we show that the symbols of their formal linearizations define conformal structures which must be Einstein-Weyl in 3D (or self-dual in 4D) if and only if the PDE is integrable by the method of hydrodynamic reductions. This demonstrates that the integrability of these dispersionless PDEs can be seen from the geometry of their formal linearizations.

[1]  V. Sokolov,et al.  Integrable (2+1)-dimensional systems of hydrodynamic type , 2010, 1009.2778.

[2]  Z dx,et al.  OVERDETERMINED SYSTEMS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[3]  L. V. Bogdanov Dunajski–Tod equation and reductions of the generalized dispersionless 2DTL hierarchy , 2012, 1204.3780.

[4]  Generalized Wilczynski Invariants for Non-Linear Ordinary Differential Equations , 2007, math/0702251.

[5]  E. Ferapontov,et al.  On the integrability of symplectic Monge–Ampère equations , 2009, 0910.3407.

[6]  E. Cartan Sur une classe d'espaces de Weyl , 1943 .

[7]  V. Zakharov Dispersionless Limit of Integrable Systems in 2 + 1 Dimensions , 1994 .

[8]  Y. Kodama,et al.  A method for solving the dispersionless KP hierarchy and its exact solutions. II , 1989 .

[9]  R. S. Ward Einstein-Weyl spaces and SU(∞) Toda fields , 1990 .

[10]  J. Gibbons,et al.  REDUCTIONS OF THE BENNEY EQUATIONS , 1996 .

[11]  M. Eastwood,et al.  Local Constraints on Einstein–Weyl Geometries: The 3-Dimensional Case , 2000 .

[12]  J. Plebański Some solutions of complex Einstein equations , 1975 .

[13]  Valentin Lychagin,et al.  Geometry of jet spaces and nonlinear partial differential equations , 1986 .

[14]  Einstein–Weyl geometry, the dKP equation and twistor theory , 2000, math/0004031.

[15]  K. Khusnutdinova,et al.  Hydrodynamic reductions of multidimensional dispersionless PDEs: The test for integrability , 2003, nlin/0312015.

[16]  V. Sokolov,et al.  Hamiltonian Systems of Hydrodynamic Type in 2 + 1 Dimensions , 2007, 0710.2012.

[17]  E. Ferapontov,et al.  On the central quadric ansatz: integrable models and Painlevé reductions , 2012, 1201.5061.

[18]  K. Tod Scalar-flat Kähler and hyper-Kähler metrics from Painlevé-III , 1995 .

[19]  General heavenly equation governs anti-self-dual gravity , 2010, 1011.2479.

[20]  I. Anderson,et al.  The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane , 1997 .

[21]  K. Tod,et al.  Minitwistor spaces and Einstein-Weyl spaces , 1985 .

[22]  Hypercomplex Integrable Systems , 1998, solv-int/9808019.

[23]  Einstein-Weyl spaces and dispersionless Kadomtsev-Petviashvili equation from Painleve I and II [rapid communication] , 2002, nlin/0204043.

[24]  H. Pedersen,et al.  SELFDUAL SPACES WITH COMPLEX STRUCTURES, EINSTEIN-WEYL GEOMETRY AND GEODESICS , 1999, math/9911117.

[25]  Differential equations and conformal structures , 2004, math/0406400.

[26]  C. LeBrun Explicit self-dual metrics on $\mathbb{CP}_2 \# \cdots\#\mathbb{CP}_2$ , 1991 .

[27]  L. V. Bogdanov Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy , 2010, 1003.0287.

[28]  Abraham Smith Integrable GL(2) Geometry and Hydrodynamic Partial Differential Equations , 2009, 0912.2789.

[29]  S. Manakov,et al.  Cauchy problem on the plane for the dispersionless Kadomtsev-Petviashvili equation , 2006, nlin/0604023.

[30]  G. Boillat Sur l'équation générale de Monge-Ampère à plusieurs variables , 1991 .

[31]  M. Dunajski An interpolating dispersionless integrable system , 2008, 0804.1234.

[32]  Maciej Dunajski,et al.  A class of Einstein–Weyl spaces associated to an integrable system of hydrodynamic type , 2003, nlin/0311024.

[33]  K. Khusnutdinova,et al.  Integrable Equations of the Dispersionless Hirota type and Hypersurfaces in the Lagrangian Grassmannian , 2007, 0705.1774.

[34]  B. Kruglikov LAPLACE TRANSFORMATION OF LIE CLASS ω = 1 OVERDETERMINED SYSTEMS , 2011, Journal of Nonlinear Mathematical Physics.

[35]  N. Hitchin Complex manifolds and Einstein’s equations , 1982 .

[36]  E. Ferapontov,et al.  Second order quasilinear PDEs and conformal structures in projective space , 2008, 0802.2626.

[37]  B. Dubrovin,et al.  Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory , 1989 .

[38]  K. Khusnutdinova,et al.  On the Integrability of (2+1)-Dimensional Quasilinear Systems , 2003, nlin/0305044.

[39]  V. Sokolov,et al.  Точно интегрируемые гиперболические уравнения лиувиллевского типа@@@Exactly integrable hyperbolic equations of Liouville type , 2001 .

[40]  Simple waves in quasilinear hyperbolic systems. I. Theory of simple waves and simple states. Examples of applications , 1983 .

[41]  K. Khusnutdinova,et al.  The characterization of two-component (2+1)-dimensional integrable systems of hydrodynamic type , 2003, nlin/0310021.

[42]  The twisted photon associated to hyper-Hermitian four-manifolds , 1998, math/9808137.

[43]  V. Lychagin,et al.  Minkowski metrics on solutions of the Khokhlov-Zabolotskaya equation , 2009 .

[44]  M. Dunajski,et al.  Einstein–Weyl structures from hyper–Kähler metrics with conformal Killing vectors , 1999, math/9907146.

[45]  C. Rogers,et al.  The (3+1)-dimensional Monge-Ampère equation in discontinuity wave theory: Application of a reciprocal transformation , 1992 .

[46]  K. Tod Einstein–Weyl spaces and third-order differential equations , 2000 .

[47]  Максим Валентинович Павлов,et al.  Новые интегрируемые $(2+1)$-уравнения гидродинамического типа@@@New integrable $(2+1)$-equations of hydrodynamic type , 2003 .

[48]  Vladislav Viktorovich Golʹdberg,et al.  Projective differential geometry of submanifolds , 1993 .

[49]  E. Ferapontov,et al.  Integrable Lagrangians and modular forms , 2007, 0707.3433.

[50]  S. P. Tsarëv THE GEOMETRY OF HAMILTONIAN SYSTEMS OF HYDRODYNAMIC TYPE. THE GENERALIZED HODOGRAPH METHOD , 1991 .

[51]  D. Calderbank Integrable Background Geometries , 2014, 1403.3471.

[52]  V. Lychagin,et al.  A classification of Monge-Ampère equations , 1993 .

[53]  Juan José Morales Ruiz,et al.  Differential Galois Theory and Non-Integrability of Hamiltonian Systems , 1999 .

[54]  I. Anderson,et al.  Generalized Laplace invariants and the method of Darboux , 1997 .

[55]  R. Penrose Nonlinear gravitons and curved twistor theory , 1976 .

[56]  K. Khusnutdinova,et al.  On a Class of Three-Dimensional Integrable Lagrangians , 2004, nlin/0407035.

[57]  R. S. Ward Integrable and solvable systems, and relations among them , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.