Dispersionless integrable systems in 3D and Einstein-Weyl geometry
暂无分享,去创建一个
[1] V. Sokolov,et al. Integrable (2+1)-dimensional systems of hydrodynamic type , 2010, 1009.2778.
[2] Z dx,et al. OVERDETERMINED SYSTEMS OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .
[3] L. V. Bogdanov. Dunajski–Tod equation and reductions of the generalized dispersionless 2DTL hierarchy , 2012, 1204.3780.
[4] Generalized Wilczynski Invariants for Non-Linear Ordinary Differential Equations , 2007, math/0702251.
[5] E. Ferapontov,et al. On the integrability of symplectic Monge–Ampère equations , 2009, 0910.3407.
[6] E. Cartan. Sur une classe d'espaces de Weyl , 1943 .
[7] V. Zakharov. Dispersionless Limit of Integrable Systems in 2 + 1 Dimensions , 1994 .
[8] Y. Kodama,et al. A method for solving the dispersionless KP hierarchy and its exact solutions. II , 1989 .
[9] R. S. Ward. Einstein-Weyl spaces and SU(∞) Toda fields , 1990 .
[10] J. Gibbons,et al. REDUCTIONS OF THE BENNEY EQUATIONS , 1996 .
[11] M. Eastwood,et al. Local Constraints on Einstein–Weyl Geometries: The 3-Dimensional Case , 2000 .
[12] J. Plebański. Some solutions of complex Einstein equations , 1975 .
[13] Valentin Lychagin,et al. Geometry of jet spaces and nonlinear partial differential equations , 1986 .
[14] Einstein–Weyl geometry, the dKP equation and twistor theory , 2000, math/0004031.
[15] K. Khusnutdinova,et al. Hydrodynamic reductions of multidimensional dispersionless PDEs: The test for integrability , 2003, nlin/0312015.
[16] V. Sokolov,et al. Hamiltonian Systems of Hydrodynamic Type in 2 + 1 Dimensions , 2007, 0710.2012.
[17] E. Ferapontov,et al. On the central quadric ansatz: integrable models and Painlevé reductions , 2012, 1201.5061.
[18] K. Tod. Scalar-flat Kähler and hyper-Kähler metrics from Painlevé-III , 1995 .
[19] General heavenly equation governs anti-self-dual gravity , 2010, 1011.2479.
[20] I. Anderson,et al. The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane , 1997 .
[21] K. Tod,et al. Minitwistor spaces and Einstein-Weyl spaces , 1985 .
[22] Hypercomplex Integrable Systems , 1998, solv-int/9808019.
[23] Einstein-Weyl spaces and dispersionless Kadomtsev-Petviashvili equation from Painleve I and II [rapid communication] , 2002, nlin/0204043.
[24] H. Pedersen,et al. SELFDUAL SPACES WITH COMPLEX STRUCTURES, EINSTEIN-WEYL GEOMETRY AND GEODESICS , 1999, math/9911117.
[25] Differential equations and conformal structures , 2004, math/0406400.
[26] C. LeBrun. Explicit self-dual metrics on $\mathbb{CP}_2 \# \cdots\#\mathbb{CP}_2$ , 1991 .
[27] L. V. Bogdanov. Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy , 2010, 1003.0287.
[28] Abraham Smith. Integrable GL(2) Geometry and Hydrodynamic Partial Differential Equations , 2009, 0912.2789.
[29] S. Manakov,et al. Cauchy problem on the plane for the dispersionless Kadomtsev-Petviashvili equation , 2006, nlin/0604023.
[30] G. Boillat. Sur l'équation générale de Monge-Ampère à plusieurs variables , 1991 .
[31] M. Dunajski. An interpolating dispersionless integrable system , 2008, 0804.1234.
[32] Maciej Dunajski,et al. A class of Einstein–Weyl spaces associated to an integrable system of hydrodynamic type , 2003, nlin/0311024.
[33] K. Khusnutdinova,et al. Integrable Equations of the Dispersionless Hirota type and Hypersurfaces in the Lagrangian Grassmannian , 2007, 0705.1774.
[34] B. Kruglikov. LAPLACE TRANSFORMATION OF LIE CLASS ω = 1 OVERDETERMINED SYSTEMS , 2011, Journal of Nonlinear Mathematical Physics.
[35] N. Hitchin. Complex manifolds and Einstein’s equations , 1982 .
[36] E. Ferapontov,et al. Second order quasilinear PDEs and conformal structures in projective space , 2008, 0802.2626.
[37] B. Dubrovin,et al. Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory , 1989 .
[38] K. Khusnutdinova,et al. On the Integrability of (2+1)-Dimensional Quasilinear Systems , 2003, nlin/0305044.
[39] V. Sokolov,et al. Точно интегрируемые гиперболические уравнения лиувиллевского типа@@@Exactly integrable hyperbolic equations of Liouville type , 2001 .
[40] Simple waves in quasilinear hyperbolic systems. I. Theory of simple waves and simple states. Examples of applications , 1983 .
[41] K. Khusnutdinova,et al. The characterization of two-component (2+1)-dimensional integrable systems of hydrodynamic type , 2003, nlin/0310021.
[42] The twisted photon associated to hyper-Hermitian four-manifolds , 1998, math/9808137.
[43] V. Lychagin,et al. Minkowski metrics on solutions of the Khokhlov-Zabolotskaya equation , 2009 .
[44] M. Dunajski,et al. Einstein–Weyl structures from hyper–Kähler metrics with conformal Killing vectors , 1999, math/9907146.
[45] C. Rogers,et al. The (3+1)-dimensional Monge-Ampère equation in discontinuity wave theory: Application of a reciprocal transformation , 1992 .
[46] K. Tod. Einstein–Weyl spaces and third-order differential equations , 2000 .
[47] Максим Валентинович Павлов,et al. Новые интегрируемые $(2+1)$-уравнения гидродинамического типа@@@New integrable $(2+1)$-equations of hydrodynamic type , 2003 .
[48] Vladislav Viktorovich Golʹdberg,et al. Projective differential geometry of submanifolds , 1993 .
[49] E. Ferapontov,et al. Integrable Lagrangians and modular forms , 2007, 0707.3433.
[50] S. P. Tsarëv. THE GEOMETRY OF HAMILTONIAN SYSTEMS OF HYDRODYNAMIC TYPE. THE GENERALIZED HODOGRAPH METHOD , 1991 .
[51] D. Calderbank. Integrable Background Geometries , 2014, 1403.3471.
[52] V. Lychagin,et al. A classification of Monge-Ampère equations , 1993 .
[53] Juan José Morales Ruiz,et al. Differential Galois Theory and Non-Integrability of Hamiltonian Systems , 1999 .
[54] I. Anderson,et al. Generalized Laplace invariants and the method of Darboux , 1997 .
[55] R. Penrose. Nonlinear gravitons and curved twistor theory , 1976 .
[56] K. Khusnutdinova,et al. On a Class of Three-Dimensional Integrable Lagrangians , 2004, nlin/0407035.
[57] R. S. Ward. Integrable and solvable systems, and relations among them , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.