The neural bases of spatial frequency processing during scene perception

Theories on visual perception agree that scenes are processed in terms of spatial frequencies. Low spatial frequencies (LSF) carry coarse information whereas high spatial frequencies (HSF) carry fine details of the scene. However, how and where spatial frequencies are processed within the brain remain unresolved questions. The present review addresses these issues and aims to identify the cerebral regions differentially involved in low and high spatial frequency processing, and to clarify their attributes during scene perception. Results from a number of behavioral and neuroimaging studies suggest that spatial frequency processing is lateralized in both hemispheres, with the right and left hemispheres predominantly involved in the categorization of LSF and HSF scenes, respectively. There is also evidence that spatial frequency processing is retinotopically mapped in the visual cortex. HSF scenes (as opposed to LSF) activate occipital areas in relation to foveal representations, while categorization of LSF scenes (as opposed to HSF) activates occipital areas in relation to more peripheral representations. Concomitantly, a number of studies have demonstrated that LSF information may reach high-order areas rapidly, allowing an initial coarse parsing of the visual scene, which could then be sent back through feedback into the occipito-temporal cortex to guide finer HSF-based analysis. Finally, the review addresses spatial frequency processing within scene-selective regions areas of the occipito-temporal cortex.

[1]  Tetsuya Iidaka,et al.  Spatial frequency of visual image modulates neural responses in the temporo-occipital lobe. An investigation with event-related fMRI. , 2004, Brain research. Cognitive brain research.

[2]  Richard S. J. Frackowiak,et al.  Where in the brain does visual attention select the forest and the trees? , 1996, Nature.

[3]  Russell A. Epstein,et al.  Abstract Representations of Location and Facing Direction in the Human Brain , 2013, The Journal of Neuroscience.

[4]  S. Kastner,et al.  Mechanisms of Spatial Attention Control in Frontal and Parietal Cortex , 2010, The Journal of Neuroscience.

[5]  J. Mcglone,et al.  Sex differences in cerebral processing of visuospatial tasks. , 1973, Cortex; a journal devoted to the study of the nervous system and behavior.

[6]  Monica Baciu,et al.  Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study , 2004, NeuroImage.

[7]  T. Schormann,et al.  Functional delineation of the human occipito-temporal areas related to face and scene processing. A PET study. , 2000, Brain : a journal of neurology.

[8]  Gereon R. Fink,et al.  Neuronal Activity in Early Visual Areas during Global and Local Processing: A Comment on Heinze, Hinrichs, Scholz, Burchert, and Mangun , 2000, Journal of Cognitive Neuroscience.

[9]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[10]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[11]  Philippe G. Schyns,et al.  Top-down attentional modulation of spatial frequency processing in scene perception , 2005 .

[12]  L. Robertson,et al.  Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  J. Hegdé Time course of visual perception: Coarse-to-fine processing and beyond , 2008, Progress in Neurobiology.

[14]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[15]  Nathalie Guyader,et al.  The coarse-to-fine hypothesis revisited: Evidence from neuro-computational modeling , 2005, Brain and Cognition.

[16]  Sylvie Chokron,et al.  Selective attention, inhibition for repeated events and hemispheric specialization , 2003, Brain and Cognition.

[17]  M. Bar,et al.  Scenes Unseen: The Parahippocampal Cortex Intrinsically Subserves Contextual Associations, Not Scenes or Places Per Se , 2008, The Journal of Neuroscience.

[18]  S. Kastner,et al.  Shifting Attentional Priorities: Control of Spatial Attention through Hemispheric Competition , 2013, The Journal of Neuroscience.

[19]  Joseph B. Hellige,et al.  Hemispheric differences are found in the identification, but not the detection, of low versus high spatial frequencies , 1990, Perception & psychophysics.

[20]  G. Humphreys,et al.  Effects of spatial frequency bands on perceptual decision: it is not the stimuli but the comparison. , 2010, Journal of vision.

[21]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[22]  Kevin W. Bowyer,et al.  The Functional Properties , 1996 .

[23]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[24]  A. Oliva,et al.  From Blobs to Boundary Edges: Evidence for Time- and Spatial-Scale-Dependent Scene Recognition , 1994 .

[25]  Russell A. Epstein The cortical basis of visual scene processing , 2005 .

[26]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[27]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[28]  Erin M. Harley,et al.  How different spatial-frequency components contribute to visual information acquisition. , 2004, Journal of experimental psychology. Human perception and performance.

[29]  M G Woldorff,et al.  Hemispheric asymmetries for different components of global/local attention occur in distinct temporo-parietal loci. , 2005, Cerebral cortex.

[30]  Frank Tong,et al.  Spatial specificity of working memory representations in the early visual cortex. , 2014, Journal of vision.

[31]  S Marrett,et al.  Local and global attention are mapped retinotopically in human occipital cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Helene Intraub,et al.  Visual Scene Perception , 2006 .

[33]  M. Bar Visual objects in context , 2004, Nature Reviews Neuroscience.

[34]  G. Mangun,et al.  Neural Mechanisms of Global and Local Processing: A Combined PET and ERP Study , 1998, Journal of Cognitive Neuroscience.

[35]  O. Güntürkün,et al.  Steroid fluctuations modify functional cerebral asymmetries: the hypothesis of progesterone-mediated interhemispheric decoupling , 2000, Neuropsychologia.

[36]  Ronald P. Crick,et al.  The Representation of the Visual Field , 1983 .

[37]  Stephen Christman,et al.  Visual hemispheric asymmetries depend on which spatial frequencies are task relevant , 1992, Brain and Cognition.

[38]  G. R. Mangun,et al.  Neural Activity in Early Visual Areas During Global and Local Processing: A Reply to Fink, Marshall, Halligan, and Dolan , 2000, Journal of Cognitive Neuroscience.

[39]  Richard B. Ivry,et al.  Hemispheric Asymmetries , 2000, Encyclopedia of Personality and Individual Differences.

[40]  Christoph M. Michel,et al.  The Neural Substrates and Timing of Top–Down Processes during Coarse-to-Fine Categorization of Visual Scenes: A Combined fMRI and ERP Study , 2010, Journal of Cognitive Neuroscience.

[41]  C. Cavada,et al.  The anatomical connections of the macaque monkey orbitofrontal cortex. A review. , 2000, Cerebral cortex.

[42]  R Näsänen,et al.  Training-induced cortical representation of a hemianopic hemifield , 2006, Journal of Neurology, Neurosurgery & Psychiatry.

[43]  I. Biederman In: An invitation to cognitive science , 2003 .

[44]  S. Miyauchi,et al.  Attention-regulated activity in human primary visual cortex. , 1998, Journal of neurophysiology.

[45]  M. Stryker,et al.  Spatial Frequency Maps in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[46]  P. Schyns,et al.  Usage of spatial scales for the categorization of faces, objects, and scenes , 2001, Psychonomic bulletin & review.

[47]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  Daniel D. Dilks,et al.  The Occipital Place Area Is Causally and Selectively Involved in Scene Perception , 2013, The Journal of Neuroscience.

[49]  Scott O. Murray,et al.  Hemispheric Asymmetry in Global/Local Processing: Effects of Stimulus Position and Spatial Frequency , 2002, NeuroImage.

[50]  Russell A. Epstein Parahippocampal and retrosplenial contributions to human spatial navigation , 2008, Trends in Cognitive Sciences.

[51]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[52]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[53]  S. Thorpe,et al.  Speed of processing in the human visual system , 1996, Nature.

[54]  Yumiko Otsuka,et al.  Temporal dynamics of spatial frequency processing in infants. , 2014, Journal of experimental psychology. Human perception and performance.

[55]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[56]  C D Frith,et al.  Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli. , 1997, Brain : a journal of neurology.

[57]  N. Kanwisher,et al.  How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI Study , 2002, Neuron.

[58]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[59]  Rainer Goebel,et al.  From Coarse to Fine? Spatial and Temporal Dynamics of Cortical Face Processing , 2010, Cerebral cortex.

[60]  Arthur P. Ginsburg,et al.  Spatial filtering and visual form perception. , 1986 .

[61]  B W Knight,et al.  Representation of spatial frequency and orientation in the visual cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Russell A. Epstein,et al.  Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. , 2006, Cerebral cortex.

[63]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[64]  M. Pinsk,et al.  Visuotopic Organization of Macaque Posterior Parietal Cortex: A Functional Magnetic Resonance Imaging Study , 2011, The Journal of Neuroscience.

[65]  E. Maguire,et al.  Exploring the parahippocampal cortex response to high and low spatial frequency spaces , 2012, Neuroreport.

[66]  Antígona Martínez,et al.  Hemispneric asymmetries in global and local processing: evidence from fMRI , 1997, Neuroreport.

[67]  Antonio Schettino,et al.  Brain dynamics of upstream perceptual processes leading to visual object recognition: A high density ERP topographic mapping study , 2011, NeuroImage.

[68]  Russell A. Epstein,et al.  Visual scene processing in familiar and unfamiliar environments. , 2007, Journal of neurophysiology.

[69]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[70]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[71]  A. T. Smith,et al.  Spatiotemporal Frequency and Direction Sensitivities of Human Visual Areas Measured Using fMRI , 2000, NeuroImage.

[72]  J Sergent,et al.  Role of the input in visual hemispheric asymmetries. , 1983, Psychological bulletin.

[73]  R. Knight,et al.  Component mechanisms underlying the processing of hierarchically organized patterns: inferences from patients with unilateral cortical lesions. , 1990, Journal of experimental psychology. Learning, memory, and cognition.

[74]  M. Bar,et al.  Cortical Analysis of Visual Context , 2003, Neuron.

[75]  J R Lishman,et al.  Role of coarse and fine spatial information in face and object processing. , 1996, Journal of experimental psychology. Human perception and performance.

[76]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[77]  Kerry Hourigan,et al.  Wake transition of a rolling sphere , 2011, J. Vis..

[78]  G L Shulman,et al.  The Role of Spatial-Frequency Channels in the Perception of Local and Global Structure , 1986, Perception.

[79]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[80]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. V. Spatial frequency , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  Fei-Fei Li,et al.  Differential connectivity within the Parahippocampal Place Area , 2013, NeuroImage.

[82]  M. Bar A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition , 2003, Journal of Cognitive Neuroscience.

[83]  Xiangmin Xu,et al.  How do functional maps in primary visual cortex vary with eccentricity? , 2007, The Journal of comparative neurology.

[84]  Monica Baciu,et al.  Hemispheric predominance assessment of phonology and semantics: A divided visual field experiment , 2006, Brain and Cognition.

[85]  Tom Hartley,et al.  Selectivity for low-level features of objects in the human ventral stream , 2010, NeuroImage.

[86]  Emily J. Ward,et al.  How reliable are visual context effects in the parahippocampal place area? , 2010, Cerebral cortex.

[87]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[88]  Philippe G. Schyns,et al.  Retinotopic sensitisation to spatial scale: Evidence for flexible spatial frequency processing in scene perception , 2006, Vision Research.

[89]  Eva Zita Patai,et al.  Is Attention Based on Spatial Contextual Memory Preferentially Guided by Low Spatial Frequency Signals? , 2013, PloS one.

[90]  Nathalie Guyader,et al.  Neural correlates of spatial frequency processing: A neuropsychological approach , 2006, Brain Research.

[91]  M. Hausmann Hemispheric asymmetry in spatial attention across the menstrual cycle , 2005, Neuropsychologia.

[92]  N. Guyader,et al.  Is Coarse-to-Fine Strategy Sensitive to Normal Aging? , 2012, PloS one.

[93]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[94]  David J Heeger,et al.  Neural correlates of sustained spatial attention in human early visual cortex. , 2007, Journal of neurophysiology.

[95]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[96]  S. Hillyard,et al.  Involvement of striate and extrastriate visual cortical areas in spatial attention , 1999, Nature Neuroscience.

[97]  Lynn C. Robertson,et al.  Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner , 2013, Vision Research.

[98]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[99]  Moshe Bar,et al.  Famous faces activate contextual associations in the parahippocampal cortex. , 2008, Cerebral cortex.

[100]  J Sergent,et al.  Theoretical and methodological consequences of variations in exposure duration in visual laterality studies , 1982, Perception & psychophysics.

[101]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[102]  Stephen E. Palmer,et al.  Modern Theories of Gestalt Perception , 1990 .

[103]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[104]  M. Bar,et al.  The parahippocampal cortex mediates spatial and nonspatial associations. , 2007, Cerebral cortex.

[105]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[106]  Christoph M. Michel,et al.  Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes , 2005, NeuroImage.

[107]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[108]  I. J. Kirk,et al.  Sex hormonal modulation of interhemispheric transfer time , 2013, Neuropsychologia.

[109]  Shingo Yamagata,et al.  Cerebral Asymmetry of the “Top-Down” Allocation of Attention to Global and Local Features , 2000, The Journal of Neuroscience.

[110]  John S. Duncan,et al.  Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus , 2004, NeuroImage.

[111]  Richard S. J. Frackowiak,et al.  Knowing where and getting there: a human navigation network. , 1998, Science.

[112]  Martin I. Sereno,et al.  Spatial maps in frontal and prefrontal cortex , 2006, NeuroImage.

[113]  F. Windels,et al.  Neuronal activity , 2006, Molecular Neurobiology.

[114]  Carole Peyrin,et al.  Hemispheric specialization for spatial frequency processing in the analysis of natural scenes , 2003, Brain and Cognition.

[115]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[116]  Joseph B. Hellige,et al.  Role of input factors in visual-field asymmetries , 1986, Brain and Cognition.

[117]  Natalia Y. Bilenko,et al.  The “Parahippocampal Place Area” Responds Preferentially to High Spatial Frequencies in Humans and Monkeys , 2011, PLoS biology.

[118]  Nathalie Guyader,et al.  Image phase or amplitude? Rapid scene categorization is an amplitude-based process. , 2004, Comptes rendus biologies.

[119]  Bruno G. Breitmeyer,et al.  Simple reaction time as a measure of the temporal response properties of transient and sustained channels , 1975, Vision Research.

[120]  Yuji Takeda,et al.  Time course of the integration of spatial frequency-based information in natural scenes , 2010, Vision Research.

[121]  S. Hochstein,et al.  The reverse hierarchy theory of visual perceptual learning , 2004, Trends in Cognitive Sciences.

[122]  Paul E. Downing,et al.  Viewpoint-Specific Scene Representations in Human Parahippocampal Cortex , 2003, Neuron.

[123]  G. R Mangun,et al.  On the processing of spatial frequencies as revealed by evoked-potential source modeling , 2000, Clinical Neurophysiology.

[124]  D R Badcock,et al.  Low-Frequency Filtering and the Processing of Local—Global Stimuli , 1990, Perception.

[125]  H. Hughes,et al.  Global Precedence, Spatial Frequency Channels, and the Statistics of Natural Images , 1996, Journal of Cognitive Neuroscience.

[126]  G. McKitterick,et al.  THE MAGNITUDE OF π , 1983 .

[127]  Sheng Li,et al.  The neural signature of spatial frequency-based information integration in scene perception , 2013, Experimental Brain Research.

[128]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[129]  D. Voyer,et al.  On the magnitude of laterality effects and sex differences in functional lateralities. , 1996, Laterality.

[130]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[131]  J. Wolfe,et al.  The order of visual processing: “Top-down,” “bottom-up,” or “middle-out” , 1979, Perception & psychophysics.

[132]  A. Oliva,et al.  Coarse Blobs or Fine Edges? Evidence That Information Diagnosticity Changes the Perception of Complex Visual Stimuli , 1997, Cognitive Psychology.

[133]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[134]  G. Poggio,et al.  Spatial properties of neurons in striate cortex of unanesthetized macaque monkey. , 1972, Investigative ophthalmology.

[135]  ContoursJames H. Elder The Statistics of Natural Image , 1998 .

[136]  A. Oliva,et al.  Dr. Angry and Mr. Smile: when categorization flexibly modifies the perception of faces in rapid visual presentations , 1999, Cognition.

[137]  R. Dolan,et al.  Switching between the Forest and the Trees: Brain Systems Involved in Local/Global Changed-Level Judgments , 2001, NeuroImage.

[138]  D. Tolhurst,et al.  Amplitude spectra of natural images. , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[139]  K Zilles,et al.  A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields , 2004, Neuroscience.

[140]  Ursula Gather,et al.  Functional cerebral asymmetries during the menstrual cycle: a cross-sectional and longitudinal analysis , 2002, Neuropsychologia.

[141]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[142]  E. DeYoe,et al.  Concurrent processing in the primate visual cortex. , 1995 .

[143]  Poggio Gf Spatial properties of neurons in striate cortex of unanesthetized macaque monkey. , 1972 .

[144]  Takemi Otsuki,et al.  Functional Properties of CD8+ Lymphocytes in Patients with Pleural Plaque and Malignant Mesothelioma , 2014, Journal of immunology research.

[145]  P Girard,et al.  Feedback connections act on the early part of the responses in monkey visual cortex. , 2001, Journal of neurophysiology.

[146]  E. Halgren,et al.  Top-down facilitation of visual recognition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[147]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[148]  M. Bar,et al.  Magnocellular Projections as the Trigger of Top-Down Facilitation in Recognition , 2007, The Journal of Neuroscience.

[149]  D. Somers,et al.  Hemispheric Asymmetry in Visuotopic Posterior Parietal Cortex Emerges with Visual Short-Term Memory Load , 2010, The Journal of Neuroscience.

[150]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[151]  Richard B Buxton,et al.  Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas , 2001, Vision Research.

[152]  L. Robertson,et al.  Neuropsychological contributions to theories of part/whole organization , 1991, Cognitive Psychology.

[153]  Nathalie Guyader,et al.  Coarse-to-fine Categorization of Visual Scenes in Scene-selective Cortex , 2014, Journal of Cognitive Neuroscience.

[154]  A. Oliva,et al.  Flexible, Diagnosticity-Driven, Rather Than Fixed, Perceptually Determined Scale Selection in Scene and Face Recognition , 1997, Perception.

[155]  Michel Dojat,et al.  Retinotopic and Lateralized Processing of Spatial Frequencies in Human Visual Cortex during Scene Categorization , 2013, Journal of Cognitive Neuroscience.

[156]  F. Kitterle,et al.  Visual field effects in the discrimination of sine-wave gratings , 1991, Perception & psychophysics.

[157]  E W Yund,et al.  The role of spatial frequency in the processing of hierarchically organized stimuli , 1993, Perception & psychophysics.

[158]  M. Tarr,et al.  Visual Object Recognition , 1996, ISTCS.

[159]  Bhuvanesh Awasthi,et al.  Distinct spatial scale sensitivities for early categorization of faces and places: neuromagnetic and behavioral findings , 2013, Front. Hum. Neurosci..

[160]  M. Sereno,et al.  Retinotopy and Attention in Human Occipital, Temporal, Parietal, and Frontal Cortex , 2008 .

[161]  Dirk B. Walther,et al.  Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain , 2009, The Journal of Neuroscience.

[162]  Andrea De Cesarei,et al.  Global and local vision in natural scene identification , 2011, Psychonomic bulletin & review.

[163]  S. Andrade,et al.  Detection of spatial frequency in brain-damaged patients: influence of hemispheric asymmetries and hemineglect , 2013, Front. Hum. Neurosci..

[164]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[165]  M. Bar The proactive brain: using analogies and associations to generate predictions , 2007, Trends in Cognitive Sciences.