Probing the internal electric field in GaN/AlGaN nanowire heterostructures.

We demonstrate the direct analysis of polarization-induced internal electric fields in single GaN/Al0.3Ga0.7N nanodiscs embedded in GaN/AlN nanowire heterostructures. Superposition of an external electric field with different polarity results in compensation or enhancement of the quantum-confined Stark effect in the nanodiscs. By field-dependent analysis of the low temperature photoluminescence energy and intensity, we prove the [0001̅]-polarity of the nanowires and determine the internal electric field strength to 1.5 MV/cm.

[1]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[2]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[3]  M. Eickhoff,et al.  Optical properties of GaN-based nanowires containing a single Al0.14Ga0.86N/GaN quantum disc , 2013, Nanotechnology.

[4]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[5]  Thomas Richter,et al.  Size-dependent photoconductivity in MBE-grown GaN-nanowires. , 2005, Nano letters.

[6]  M. Stutzmann,et al.  GaN quantum dots as optical transducers for chemical sensors , 2009 .

[7]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[8]  J. Arbiol,et al.  Carrier confinement in GaN/Al x Ga 1-x N nanowire heterostructures (0 , 2011, 1109.3394.

[9]  V. Favre-Nicolin,et al.  Elastic strain relaxation in GaN/AlN nanowire superlattice , 2010 .

[10]  Li-Wei Tu,et al.  Visible-blind photodetector based on p–i–n junction GaN nanowire ensembles , 2010, Nanotechnology.

[11]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[12]  D. Kalita,et al.  Strong suppression of internal electric field in GaN/AlGaN multi-layer quantum dots in nanowires , 2011 .

[13]  M. Eickhoff,et al.  Detection of oxidising gases using an optochemical sensor system based on GaN/InGaN nanowires , 2014 .

[14]  Nicolas Grandjean,et al.  Self-limitation of AlGaN/GaN quantum well energy by built-in polarization field , 1999 .

[15]  J. M. Gray,et al.  On-chip optical interconnects made with gallium nitride nanowires. , 2013, Nano letters.

[16]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[17]  K. Kishino,et al.  InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate , 2004 .

[18]  J. Schlager,et al.  Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires , 2011 .

[19]  Sanjay Mathur,et al.  Ultralow power consumption gas sensors based on self-heated individual nanowires , 2008 .

[20]  J. Schlager,et al.  Toward Discrete Axial p–n Junction Nanowire Light-Emitting Diodes Grown by Plasma-Assisted Molecular Beam Epitaxy , 2013, Journal of Electronic Materials.

[21]  Achim Trampert,et al.  Characterization of GaN quantum discs embedded in Al x Ga 1 − x N nanocolumns grown by molecular beam epitaxy , 2003 .

[22]  M. Eickhoff,et al.  Germanium doping of self-assembled GaN nanowires grown by plasma-assisted molecular beam epitaxy , 2013 .

[23]  V. L. Korenev,et al.  Optical Signatures of Coupled Quantum Dots , 2006, Science.

[24]  J. Merz,et al.  ASYMMETRIC STARK SHIFT IN ALXIN1-XAS/ALVGA1-YAS SELF-ASSEMBLED DOTS , 1998 .

[25]  M. Asif Khan,et al.  High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction , 1993 .

[26]  Lucio Robledo,et al.  Conditional Dynamics of Interacting Quantum Dots , 2008, Science.

[27]  S. Gwo,et al.  Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources , 2011 .

[28]  A. Waag,et al.  GaN based nanorods for solid state lighting , 2012 .

[29]  M. Eickhoff,et al.  Self-assembled GaN quantum wires on GaN/AlN nanowire templates. , 2012, Nanoscale.

[30]  Pierre Lefebvre,et al.  Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells. , 1998 .

[31]  F. Calle,et al.  Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy , 2000 .

[32]  A. Waag,et al.  Group III nitride core–shell nano‐ and microrods for optoelectronic applications , 2013 .

[33]  Kyung-Hwa Yoo,et al.  Ultraviolet photodetector based on single GaN nanorod p–n junctions , 2006 .

[34]  M. Stutzmann,et al.  Optical properties of Si- and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy , 2008 .

[35]  F. Julien,et al.  Ultraviolet photodetector based on GaN/AlN quantum disks in a single nanowire. , 2010, Nano letters.

[36]  B. Gil III-Nitride Semiconductors and Their Modern Devices , 2013 .

[37]  M. Eickhoff,et al.  GaN nanodiscs embedded in nanowires as optochemical transducers , 2011, Nanotechnology.

[38]  Martin Eickhoff,et al.  Opto-chemical sensor system for the detection of H2 and hydrocarbons based on InGaN/GaN nanowires , 2012 .

[39]  Shigeru Nakagawa,et al.  Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect , 1998 .

[40]  M. Eickhoff,et al.  Polarity assignment in ZnTe, GaAs, ZnO, and GaN-AlN nanowires from direct dumbbell analysis. , 2012, Nano letters.

[41]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[42]  G. Abstreiter,et al.  Electrical control of interdot electron tunneling in a double InGaAs quantum-dot nanostructure. , 2011, Physical review letters.

[43]  J. Speck,et al.  Nonpolar and Semipolar Group III Nitride-Based Materials , 2009 .

[44]  Bruno Gayral,et al.  Quantum-confined Stark effect in GaN/AlN quantum dots in nanowires , 2009 .

[45]  M. Mori,et al.  Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy , 1997 .