Quantum learning: asymptotically optimal classification of qubit states
暂无分享,去创建一个
[1] E. Bagan,et al. Collective versus local measurements in a qubit mixed-state estimation , 2003, quant-ph/0307199.
[2] Sébastien Gambs,et al. Quantum classification , 2008, ArXiv.
[3] J. Kahn,et al. Local asymptotic normality for qubit states , 2005, quant-ph/0512075.
[4] J. Kahn,et al. Optimal Estimation of Qubit States with Continuous Time Measurements , 2006, quant-ph/0608074.
[5] David A. Cohn,et al. Active Learning with Statistical Models , 1996, NIPS.
[6] Giacomo Mauro D'Ariano,et al. Classical randomness in quantum measurements , 2004, quant-ph/0408115.
[7] A. Hayashi,et al. Unambiguous pure-state identification without classical knowledge , 2005, quant-ph/0510015.
[8] Masahito Hayashi. Asymptotic theory of quantum statistical inference : selected papers , 2005 .
[9] Gerardo Adesso,et al. Quantum-teleportation benchmarks for independent and identically distributed spin states and displaced thermal states , 2010, 1004.1843.
[10] Masahide Sasaki,et al. Quantum learning and universal quantum matching machine , 2002 .
[11] A. V. D. Vaart,et al. Asymptotic Statistics: U -Statistics , 1998 .
[12] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[13] R. Gill,et al. Optimal full estimation of qubit mixed states , 2005, quant-ph/0510158.
[14] Richard D. Gill. Conciliation of Bayes and Pointwise Quantum State Estimation: Asymptotic information bounds in quantum statistics , 2005 .
[15] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[16] Ruediger Schack,et al. Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.
[17] Beck,et al. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.
[18] J. M. Radcliffe. Some properties of coherent spin states , 1971 .
[19] A. Jenčová,et al. Local Asymptotic Normality in Quantum Statistics , 2006, quant-ph/0606213.
[20] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[21] G. D’Ariano,et al. Optimal quantum learning of a unitary transformation , 2009, 0903.0543.
[22] O. Barndorff-Nielsen,et al. On quantum statistical inference , 2003, quant-ph/0307189.
[23] Mark Hillery,et al. Universal programmable quantum state discriminator that is optimal for unambiguously distinguishing between unknown states. , 2005, Physical review letters.
[24] J. Kahn,et al. Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.
[25] A. V. D. Vaart,et al. Asymptotic Statistics: Frontmatter , 1998 .
[26] L. L. Cam,et al. Asymptotic Methods In Statistical Decision Theory , 1986 .
[27] H. Yuen. Quantum detection and estimation theory , 1978, Proceedings of the IEEE.
[28] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[29] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[30] Klaus Molmer,et al. Quantum learning by measurement and feedback , 2008, 0803.1418.
[31] C. Helstrom. Quantum detection and estimation theory , 1969 .
[32] Separable measurement estimation of density matrices and its fidelity gap with collective protocols. , 2006, Physical review letters.
[33] A. Hayashi,et al. Quantum pure-state identification , 2005, quant-ph/0507237.
[34] Ashutosh Kumar Singh,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .
[35] Nasser M. Nasrabadi,et al. Pattern Recognition and Machine Learning , 2006, Technometrics.
[36] O. Gühne,et al. 03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .
[37] 中澤 真,et al. Devroye, L., Gyorfi, L. and Lugosi, G. : A Probabilistic Theory of Pattern Recognition, Springer (1996). , 1997 .
[38] Ueda,et al. Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[39] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[40] V. Belavkin. Generalized uncertainty relations and efficient measurements in quantum systems , 1976, quant-ph/0412030.
[41] H. Paul,et al. Measuring the quantum state of light , 1997 .
[42] A. Tsybakov,et al. Fast learning rates for plug-in classifiers , 2007, 0708.2321.