Convex parametrization of reduced order controllers for a class of problems under partial state measurements
暂无分享,去创建一个
We consider a reduced order controller synthesis for a fairly general class of control problems, when some of state variables can be available without noise. We give a necessary and sufficient condition for the existence of a reduced order controller in terms of the linear matrix inequality (LMI), and show that the order of the controller can be reduced by the number of the state variables available in the measurements. In addition, we also provide a convex parametrization of such reduced order controllers.
[1] I. Masubuchi,et al. LMI-based output feedback controller design-using a convex parametrization of full-order controllers , 1995, Proceedings of 1995 American Control Conference - ACC'95.
[2] T. Watanabe,et al. Reduced order solutions to nonstandard H/sub 2/ and H/sub /spl infin// control problems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.
[3] P. Antsaklis,et al. Reduced-order controllers for continuous and discrete-time singular H ∞ control problems based on LMI , 1996 .