Curvature wavefront sensing performance simulations for active correction of the Javalambre wide-field telescopes

In order to maintain image quality during Javalambre wide field telescope operations, deformations and rigid body motions must be actively controlled to minimize optical disturbances. For JST/T250 the aberrations of the telescope will be measured with four curvature sensors at the focal plane. To correct the measured distortions, the secondary mirror position (with a hexapod support) and the camera position can be modified in a control closed loop. Multiple software tools have been developed to accomplish this goal, constituting the "Observatorio Astrofísico de Javalambre" (OAJ) Active Optics Pipeline. We present a comprehensive analysis of the wave-front sensing system, including the availability of reference stars, pupil registration, wavefront estimators and the iteration matrix evaluation techniques. Some preliminary simulations have been made using a telescope model with a Optical Ray Tracing Software.

[1]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[2]  A. J. Cenarro,et al.  The Javalambre Astrophysical Observatory project , 2010, Astronomical Telescopes + Instrumentation.

[3]  G. L. Wycoff,et al.  THE THIRD US NAVAL OBSERVATORY CCD ASTROGRAPH CATALOG (UCAC3) , 2004, 1003.2136.

[4]  A. Ederoclite,et al.  Goals and strategies in the global control design of the OAJ Robotic Observatory , 2012, Other Conferences.

[5]  F Roddier,et al.  Curvature sensing and compensation: a new concept in adaptive optics. , 1988, Applied optics.

[6]  Scot S Olivier,et al.  Curvature wavefront sensing performance evaluation for active correction of the Large Synoptic Survey Telescope (LSST). , 2010, Optics express.

[7]  Paul Berry,et al.  Wavefront sensing within the VISTA infrared camera , 2004, SPIE Astronomical Telescopes + Instrumentation.

[8]  A. J. Cenarro,et al.  The Observatorio Astrofísico de Javalambre: goals and current status , 2012, Other Conferences.

[9]  A. J. Cenarro,et al.  JPCam: A 1.2Gpixel camera for the J-PAS survey , 2013 .

[10]  A. J. Cenarro,et al.  Design of the J-PAS and J-PLUS filter systems , 2012, Other Conferences.

[11]  K. Nugent,et al.  Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination , 1996 .

[12]  C. Campbell Wave-front sensing by use of a Green's function solution to the intensity transport equation: comment. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Erez N. Ribak,et al.  Experimental limits on curvature sensing , 1999, Remote Sensing.

[14]  R. Lane,et al.  Wave-front sensing from defocused images by use of wave-front slopes. , 2002, Applied optics.

[15]  Thierry Blu,et al.  Least-squares image resizing using finite differences , 2001, IEEE Trans. Image Process..

[16]  Jiang Zongfu,et al.  Frequency analysis of wavefront curvature sensing: optimum propagation distance and multi-z wavefront curvature sensing. , 2009, Optics express.

[17]  J. L. Lamadrid,et al.  Site Testing of the Sierra de Javalambre: First Results , 2009, 0912.3762.