Robustness in multi-objective optimization using evolutionary algorithms

Abstract This work discusses robustness assessment during multi-objective optimization with a Multi-Objective Evolutionary Algorithm (MOEA) using a combination of two types of robustness measures. Expectation quantifies simultaneously fitness and robustness, while variance assesses the deviation of the original fitness in the neighborhood of the solution. Possible equations for each type are assessed via application to several benchmark problems and the selection of the most adequate is carried out. Diverse combinations of expectation and variance measures are then linked to a specific MOEA proposed by the authors, their selection being done on the basis of the results produced for various multi-objective benchmark problems. Finally, the combination preferred plus the same MOEA are used successfully to obtain the fittest and most robust Pareto optimal frontiers for a few more complex multi-criteria optimization problems.

[1]  J. D. Schaffer,et al.  Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .

[2]  Kalyanmoy Deb,et al.  Searching for Robust Pareto-Optimal Solutions in Multi-objective Optimization , 2005, EMO.

[3]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[6]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[7]  António Gaspar-Cunha,et al.  RPSGAe - Reduced Pareto Set Genetic Algorithm: Application to Polymer Extrusion , 2004, Metaheuristics for Multiobjective Optimisation.

[8]  Indraneel Das,et al.  Nonlinear Multicriteria Optimization and Robust Optimality , 1997 .

[9]  António Gaspar-Cunha,et al.  Use of Genetic Algorithms in Multicriteria Optimization to Solve Industrial Problems , 1997, ICGA.

[10]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[11]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[12]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[13]  J. Gero,et al.  REDUCING THE PARETO OPTIMAL SET IN MULTICRITERIA OPTIMIZATION(With Applications to Pareto Optimal Dynamic Programming) , 1985 .

[14]  Bernhard Sendhoff,et al.  Trade-Off between Performance and Robustness: An Evolutionary Multiobjective Approach , 2003, EMO.

[15]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[16]  Wei Chen,et al.  PHYSICAL PROGRAMMING FOR ROBUST DESIGN , 1999 .

[17]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[18]  Shigeyoshi Tsutsui,et al.  Genetic algorithms with a robust solution searching scheme , 1997, IEEE Trans. Evol. Comput..

[19]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[20]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[21]  Lothar Thiele,et al.  Proceedings of the 2nd international conference on Evolutionary multi-criterion optimization , 2003 .

[22]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[23]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[24]  Xavier Gandibleux,et al.  Metaheuristics for Multiobjective Optimisation , 2004, Lecture Notes in Economics and Mathematical Systems.

[25]  Susana Cecilia Esquivel Evolutionary algorithms for solving multi-objetive problems . Carlos A. Coello Coello, David A. van Veldhuizen and Gary R., Lamont , 2002 .

[26]  T. Ray Constrained robust optimal design using a multiobjective evolutionary algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[27]  Thomas Bäck,et al.  Robust design of multilayer optical coatings by means of evolutionary algorithms , 1998, IEEE Trans. Evol. Comput..