Metric Spaces for Temporal Information Retrieval

Documents and queries are rich in temporal features, both at the meta-level and at the content-level. We exploit this information to define temporal scope similarities between documents and queries in metric spaces. Our experiments show that the proposed metrics can be very effective for modeling the relevance for different search tasks, and provide insights into an inherent asymmetry in temporal query semantics. Moreover, we propose a simple ranking model that combines the temporal scope similarity with traditional keyword similarities. We experimentally show that it is not worse than traditional keyword-based rankings for non-temporal queries, and that it improves the overall effectiveness for time-based queries.

[1]  llsoo Ahn,et al.  Temporal Databases , 1986, Computer.

[2]  M. de Rijke,et al.  Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval , 2013, SIGIR 2013.

[3]  Tetsuya Sakai,et al.  Evaluating Information Retrieval Metrics Based on Bootstrap Hypothesis Tests , 2007 .

[4]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[5]  Fernando Diaz,et al.  Temporal profiles of queries , 2007, TOIS.

[6]  Robert H. Halstead,et al.  Parallel Symbolic Computing , 1986, Computer.

[7]  Stuart Macdonald,et al.  User Engagement in Research Data Curation , 2009, ECDL.

[8]  Michael Gertz,et al.  On the value of temporal information in information retrieval , 2007, SIGF.

[9]  Fredric C. Gey,et al.  NTCIR-GeoTime Overview: Evaluating Geographic and Temporal Search , 2010, NTCIR.

[10]  Leon Derczynski,et al.  TIMEN: An Open Temporal Expression Normalisation Resource , 2012, LREC.

[11]  Gerhard Weikum,et al.  A Language Modeling Approach for Temporal Information Needs , 2010, ECIR.

[12]  Hui Xiong,et al.  Manhattan Distance , 2008, Encyclopedia of GIS.

[13]  Fuchun Peng,et al.  Improving search relevance for implicitly temporal queries , 2009, SIGIR.

[14]  W. Bruce Croft,et al.  Time-based language models , 2003, CIKM '03.

[15]  Cristina Ribeiro,et al.  Use of Temporal Expressions in Web Search , 2008, ECIR.

[16]  Kjetil Nørvåg,et al.  Determining Time of Queries for Re-ranking Search Results , 2010, ECDL.

[17]  Carlo Strapparava,et al.  Proceedings of the 5th International Workshop on Semantic Evaluation , 2010 .

[18]  Ricardo Campos,et al.  Enriching temporal query understanding through date identification: how to tag implicit temporal queries? , 2012, TempWeb '12.

[19]  Michael Gertz,et al.  HeidelTime: High Quality Rule-Based Extraction and Normalization of Temporal Expressions , 2010, *SEMEVAL.

[20]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[21]  Robin Sibson,et al.  SLINK: An Optimally Efficient Algorithm for the Single-Link Cluster Method , 1973, Comput. J..

[22]  Milad Shokouhi,et al.  On the SPOT : Question Answering over Temporally Enhanced Structured Data , 2013 .

[23]  Sérgio Nunes Exploring temporal evidence in web information retrieval , 2007 .

[24]  James Pustejovsky,et al.  The TempEval challenge: identifying temporal relations in text , 2009, Lang. Resour. Evaluation.

[25]  Michael Gertz,et al.  Temporal Information Retrieval: Challenges and Opportunities , 2011, TWAW.

[26]  James Pustejovsky,et al.  The language of time : a reader , 2005 .

[27]  James Pustejovsky,et al.  TimeML: Robust Specification of Event and Temporal Expressions in Text , 2003, New Directions in Question Answering.