Shifted Fourier Matrices and Their Tridiagonal Commutors
暂无分享,去创建一个
[1] W. W. Sawyer. On the Matrix With Elements 1/(r+s-1) , 1974, Canadian Mathematical Bulletin.
[2] G. Bongiovanni,et al. One-dimensional and two-dimensional generalised discrete fourier transforms , 1976 .
[3] Richard O. Rowlands. The odd discrete Fourier transform , 1976, ICASSP.
[4] M. Bellanger,et al. Odd-time odd-frequency discrete Fourier transform for symmetric real-valued series , 1976, Proceedings of the IEEE.
[5] F. Grünbaum. Eigenvectors of a Toeplitz Matrix: Discrete Version of the Prolate Spheroidal Wave Functions , 1981 .
[6] F. Grünbaum. Toeplitz matrices commuting with tridiagonal matrices , 1981 .
[7] B. Dickinson,et al. Eigenvectors and functions of the discrete Fourier transform , 1982 .
[8] F. Grünbaum,et al. A remark on Hilbert's matrix , 1982 .
[9] F. Grünbaum,et al. The eigenvectors of the discrete Fourier transform: A version of the Hermite functions , 1982 .
[10] David H. Bailey,et al. The Fractional Fourier Transform and Applications , 1991, SIAM Rev..
[11] Ronald L. Graham,et al. Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.
[12] Stephen A. Martucci,et al. Symmetric convolution and the discrete sine and cosine transforms , 1993, IEEE Trans. Signal Process..
[13] Gilbert Strang,et al. The Discrete Cosine Transform , 1999, SIAM Rev..
[14] Z. Zalevsky,et al. The Fractional Fourier Transform: with Applications in Optics and Signal Processing , 2001 .