Molecular heterogeneity of C. elegans glia across sexes

A comprehensive description of nervous system function, and sex dimorphism within, is incomplete without clear assessment of the diversity of its component cell types, neurons and glia. C. elegans has an invariant nervous system with the first mapped connectome of a multi- cellular organism and single-cell atlas of component neurons. Here we present single nuclear RNA-seq evaluation of glia across the entire adult C. elegans nervous system, including both sexes. Machine learning models enabled us to identify both sex-shared and sex-specific glia and glial subclasses. We have identified and validated molecular markers in silico and in vivo for these molecular subcategories. Comparative analytics also reveals previously unappreciated molecular heterogeneity in anatomically identical glia between and within sexes, indicating consequent functional heterogeneity. Furthermore, our datasets reveal that while adult C. elegans glia express neuropeptide genes, they lack the canonical unc-31/CAPS-dependent dense core vesicle release machinery. Thus, glia employ alternate neuromodulator processing mechanisms. Overall, this molecular atlas, available at www.wormglia.org, reveals rich insights into heterogeneity and sex dimorphism in glia across the entire nervous system of an adult animal.

[1]  O. Hobert,et al.  The neuropeptidergic connectome of C. elegans , 2022, Neuron.

[2]  David R. Kelley,et al.  The complete cell atlas of an aging multicellular organism , 2022, bioRxiv.

[3]  Steven J. Cook,et al.  Molecular topography of an entire nervous system , 2020, Cell.

[4]  C. Desplan,et al.  Neuronal diversity and convergence in a visual system developmental atlas , 2020, Nature.

[5]  Steven J. Cook,et al.  Direct glia-to-neuron transdifferentiation gives rise to a pair of male-specific neurons that ensure nimble male mating , 2020, eLife.

[6]  Maxwell G. Heiman,et al.  Cell-type-specific promoters for C. elegans glia , 2020, bioRxiv.

[7]  A. Dillin,et al.  Four glial cells regulate ER stress resistance and longevity via neuropeptide signaling in C. elegans , 2020, Science.

[8]  Shai Shaham,et al.  Glia-Neuron Interactions in Caenorhabditis elegans. , 2019, Annual review of neuroscience.

[9]  Yi Wang,et al.  Whole-animal connectomes of both Caenorhabditis elegans sexes , 2019, Nature.

[10]  D. Pe’er,et al.  Characterization of cell fate probabilities in single-cell data with Palantir , 2019, Nature Biotechnology.

[11]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[12]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[13]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[14]  S. Herculano‐Houzel,et al.  You Do Not Mess with the Glia , 2018, Neuroglia.

[15]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[16]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[17]  Andrew C. Adey,et al.  Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .

[18]  J. Ule,et al.  Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging , 2017, Cell reports.

[19]  S. Shaham,et al.  Transcriptional control of non-apoptotic developmental cell death in C. elegans , 2016, Cell Death and Differentiation.

[20]  N. Waterhouse,et al.  Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. , 2016, Cold Spring Harbor protocols.

[21]  Yun Lu,et al.  PROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans. , 2016, Cell reports.

[22]  David H. Hall,et al.  Glia-derived neurons are required for sex-specific learning in C. elegans , 2015, Nature.

[23]  I. Mori,et al.  A glial K+/Cl− cotransporter modifies temperature‐evoked dynamics in Caenorhabditis elegans sensory neurons , 2015, Genes, brain, and behavior.

[24]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[25]  A. Verkhratsky,et al.  Caenorhabditis elegans glia modulate neuronal activity and behavior , 2014, Front. Cell. Neurosci..

[26]  O. Hobert The neuronal genome of Caenorhabditis elegans. , 2013, WormBook : the online review of C. elegans biology.

[27]  S. Bilbo,et al.  Sex, glia, and development: Interactions in health and disease , 2012, Hormones and Behavior.

[28]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[29]  Oliver Hobert,et al.  Neurogenesis in the nematode Caenorhabditis elegans. , 2010, WormBook : the online review of C. elegans biology.

[30]  B. Barres,et al.  Astrocyte heterogeneity: an underappreciated topic in neurobiology , 2010, Current Opinion in Neurobiology.

[31]  S. Shaham Chemosensory organs as models of neuronal synapses , 2010, Nature Reviews Neuroscience.

[32]  Yun Lu,et al.  Glia Are Essential for Sensory Organ Function in C. elegans , 2008, Science.

[33]  T. Hökfelt,et al.  ‘Neuro’-peptides in glia: Focus on NPY and galanin , 2003, Trends in Neurosciences.

[34]  Zeynep F. Altun,et al.  WormAtlas Hermaphrodite Handbook - Nervous System - Neuronal Support Cells , 2003 .

[35]  J. Chasnov,et al.  Why are there males in the hermaphroditic species Caenorhabditis elegans? , 2002, Genetics.

[36]  Kyuhyung Kim,et al.  FMRFamide-related neuropeptide gene family in Caenorhabditis elegans , 1999, Brain Research.

[37]  DH Hall,et al.  The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  J. Sulston,et al.  The Caenorhabditis elegans male: postembryonic development of nongonadal structures. , 1980, Developmental biology.

[39]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[40]  S. Ward,et al.  Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans , 1975, The Journal of comparative neurology.

[41]  Kyuhyung Kim,et al.  Neuropeptides. , 2008, WormBook : the online review of C. elegans biology.

[42]  D. Frayer SEXUAL DIMORPHISM , 2005 .

[43]  M. Baxter,et al.  Sexual dimorphism in cerebellar structure, function, and response to environmental perturbations. , 2005, Progress in brain research.

[44]  P. Taghert,et al.  Drosophila neuropeptide signaling. , 2003, Advances in genetics.

[45]  R. Simerly Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. , 2002, Annual review of neuroscience.