NEW MIXED ELEMENTS FOR MAXWELL EQUATIONS∗
暂无分享,去创建一个
[1] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[2] A. Ženíšek. Polynomial approximation on tetrahedrons in the finite element method , 1973 .
[3] L. R. Scott,et al. A nodal basis for ¹ piecewise polynomials of degree ≥5 , 1975 .
[4] L. R. Scott,et al. Simultaneous approximation in scales of Banach spaces , 1978 .
[5] J. Douglas,et al. A family of $C^1$ finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems , 1979 .
[6] P. Grisvard. Boundary value problems in non-smooth domains , 1980 .
[7] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[8] B. Mercier,et al. Eigenvalue approximation by mixed and hybrid methods , 1981 .
[9] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[10] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[11] F. Kikuchi,et al. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .
[12] M. Birman,et al. L2-Theory of the Maxwell operator in arbitrary domains , 1987 .
[13] M. Dauge. Elliptic boundary value problems on corner domains , 1988 .
[14] F. Kikuchi. On a discrete compactness property for the Nedelec finite elements , 1989 .
[15] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[16] J. Lions. Finite Element Methods(part 1) Vol.2 , 1991 .
[17] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[18] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[19] M. Cessenat. MATHEMATICAL METHODS IN ELECTROMAGNETISM: LINEAR THEORY AND APPLICATIONS , 1996 .
[20] V. Girault,et al. Vector potentials in three-dimensional non-smooth domains , 1998 .
[21] B. Jiang. The Least-Squares Finite Element Method , 1998 .
[22] M. Costabel,et al. Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .
[23] Vivette Girault,et al. Hermite interpolation of nonsmooth functions preserving boundary conditions , 2002, Math. Comput..
[24] Martin Costabel,et al. Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.
[25] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[26] Joseph E. Pasciak,et al. A new approximation technique for div-curl systems , 2003, Math. Comput..
[27] Shangyou Zhang,et al. A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..
[28] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[29] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[30] Shangyou Zhang. A family of 3D continuously differentiable finite elements on tetrahedral grids , 2009 .
[31] Larry L. Schumaker,et al. A C1 quadratic trivariate macro-element space defined over arbitrary tetrahedral partitions , 2009, J. Approx. Theory.
[32] Feng Jia,et al. The Local L2 Projected C0 Finite Element Method for Maxwell Problem , 2009, SIAM J. Numer. Anal..
[33] Peter Alfeld,et al. Two tetrahedral C1 cubic macro elements , 2009, J. Approx. Theory.
[34] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[35] Shangyou Zhang. Divergence-free finite elements on tetrahedral grids for k≥6 , 2011, Math. Comput..
[36] Jean-Luc Guermond,et al. Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements , 2011, Math. Comput..
[37] Weiying Zheng,et al. A Delta-Regularization Finite Element Method for a Double Curl Problem with Divergence-Free Constraint , 2012, SIAM J. Numer. Anal..
[38] Santiago Badia,et al. A Nodal-based Finite Element Approximation of the Maxwell Problem Suitable for Singular Solutions , 2012, SIAM J. Numer. Anal..
[39] Huo-Yuan Duan,et al. Error Estimates for a Vectorial Second-Order Elliptic Eigenproblem by the Local L2 Projected C0 Finite Element Method , 2013, SIAM J. Numer. Anal..
[40] Richard S. Falk,et al. Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..
[41] Michael Neilan,et al. Conforming and divergence-free Stokes elements on general triangular meshes , 2013, Math. Comput..
[42] Suh-Yuh Yang,et al. Computation of Maxwell singular solution by nodal-continuous elements , 2014, J. Comput. Phys..
[43] J. Guermond,et al. An Interior Penalty Method with C0 Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity , 2014, 1402.4454.
[44] J. Guzmán,et al. Conforming and divergence-free Stokes elements in three dimensions , 2014 .
[45] Michael Neilan,et al. Discrete and conforming smooth de Rham complexes in three dimensions , 2015, Math. Comput..
[46] M. Neilan,et al. Stokes elements on cubic meshes yielding divergence-free approximations , 2016 .
[47] Weiying Zheng,et al. An Adaptive FEM for a Maxwell Interface Problem , 2016, J. Sci. Comput..
[48] Huo-Yuan Duan,et al. A Finite Element Method for a Curlcurl-Graddiv Eigenvalue Interface Problem , 2016, SIAM J. Numer. Anal..
[49] Volker John,et al. On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..
[50] Suh-Yuh Yang,et al. A Mixed H1-Conforming Finite Element Method for Solving Maxwell's Equations with Non-H1 Solution , 2018, SIAM J. Sci. Comput..
[51] Michael Neilan,et al. Inf-Sup Stable Finite Elements on Barycentric Refinements Producing Divergence-Free Approximations in Arbitrary Dimensions , 2017, SIAM J. Numer. Anal..
[52] Kaibo Hu,et al. Generalized finite element systems for smooth differential forms and Stokes’ problem , 2016, Numerische Mathematik.
[53] Morten Hjorth-Jensen. Eigenvalue Problems , 2021, Explorations in Numerical Analysis.
[54] L. Ridgway Scott,et al. The Scott-Vogelius finite elements revisited , 2017, Math. Comput..
[55] Guosheng Fu,et al. Exact smooth piecewise polynomial sequences on Alfeld splits , 2018, Math. Comput..