NEW MIXED ELEMENTS FOR MAXWELL EQUATIONS∗

New inf-sup stable mixed elements are proposed and analyzed for solving the Maxwell equations in terms of electric field and Lagrange multiplier. Nodal-continuous Lagrange elements of any order on simplexes in twoand three-dimensional spaces can be used for the electric field. The multiplier is compatibly approximated always by the discontinuous piecewise constant elements. A general theory of stability and error estimates is developed; when applied to the eigenvalue problem, we show that the proposed mixed elements provide spectral-correct, spurious-free approximations. Essentially optimal error bounds (only up to an arbitrarily small constant) are obtained for eigenvalues and for both singular and smooth solutions. Numerical experiments are performed to illustrate the theoretical results.

[1]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[2]  A. Ženíšek Polynomial approximation on tetrahedrons in the finite element method , 1973 .

[3]  L. R. Scott,et al.  A nodal basis for ¹ piecewise polynomials of degree ≥5 , 1975 .

[4]  L. R. Scott,et al.  Simultaneous approximation in scales of Banach spaces , 1978 .

[5]  J. Douglas,et al.  A family of $C^1$ finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems , 1979 .

[6]  P. Grisvard Boundary value problems in non-smooth domains , 1980 .

[7]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[8]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[9]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[10]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[11]  F. Kikuchi,et al.  Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .

[12]  M. Birman,et al.  L2-Theory of the Maxwell operator in arbitrary domains , 1987 .

[13]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[14]  F. Kikuchi On a discrete compactness property for the Nedelec finite elements , 1989 .

[15]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[16]  J. Lions Finite Element Methods(part 1) Vol.2 , 1991 .

[17]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  M. Cessenat MATHEMATICAL METHODS IN ELECTROMAGNETISM: LINEAR THEORY AND APPLICATIONS , 1996 .

[20]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[21]  B. Jiang The Least-Squares Finite Element Method , 1998 .

[22]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[23]  Vivette Girault,et al.  Hermite interpolation of nonsmooth functions preserving boundary conditions , 2002, Math. Comput..

[24]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.

[25]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[26]  Joseph E. Pasciak,et al.  A new approximation technique for div-curl systems , 2003, Math. Comput..

[27]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[28]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[29]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[30]  Shangyou Zhang A family of 3D continuously differentiable finite elements on tetrahedral grids , 2009 .

[31]  Larry L. Schumaker,et al.  A C1 quadratic trivariate macro-element space defined over arbitrary tetrahedral partitions , 2009, J. Approx. Theory.

[32]  Feng Jia,et al.  The Local L2 Projected C0 Finite Element Method for Maxwell Problem , 2009, SIAM J. Numer. Anal..

[33]  Peter Alfeld,et al.  Two tetrahedral C1 cubic macro elements , 2009, J. Approx. Theory.

[34]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[35]  Shangyou Zhang Divergence-free finite elements on tetrahedral grids for k≥6 , 2011, Math. Comput..

[36]  Jean-Luc Guermond,et al.  Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements , 2011, Math. Comput..

[37]  Weiying Zheng,et al.  A Delta-Regularization Finite Element Method for a Double Curl Problem with Divergence-Free Constraint , 2012, SIAM J. Numer. Anal..

[38]  Santiago Badia,et al.  A Nodal-based Finite Element Approximation of the Maxwell Problem Suitable for Singular Solutions , 2012, SIAM J. Numer. Anal..

[39]  Huo-Yuan Duan,et al.  Error Estimates for a Vectorial Second-Order Elliptic Eigenproblem by the Local L2 Projected C0 Finite Element Method , 2013, SIAM J. Numer. Anal..

[40]  Richard S. Falk,et al.  Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..

[41]  Michael Neilan,et al.  Conforming and divergence-free Stokes elements on general triangular meshes , 2013, Math. Comput..

[42]  Suh-Yuh Yang,et al.  Computation of Maxwell singular solution by nodal-continuous elements , 2014, J. Comput. Phys..

[43]  J. Guermond,et al.  An Interior Penalty Method with C0 Finite Elements for the Approximation of the Maxwell Equations in Heterogeneous Media: Convergence Analysis with Minimal Regularity , 2014, 1402.4454.

[44]  J. Guzmán,et al.  Conforming and divergence-free Stokes elements in three dimensions , 2014 .

[45]  Michael Neilan,et al.  Discrete and conforming smooth de Rham complexes in three dimensions , 2015, Math. Comput..

[46]  M. Neilan,et al.  Stokes elements on cubic meshes yielding divergence-free approximations , 2016 .

[47]  Weiying Zheng,et al.  An Adaptive FEM for a Maxwell Interface Problem , 2016, J. Sci. Comput..

[48]  Huo-Yuan Duan,et al.  A Finite Element Method for a Curlcurl-Graddiv Eigenvalue Interface Problem , 2016, SIAM J. Numer. Anal..

[49]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[50]  Suh-Yuh Yang,et al.  A Mixed H1-Conforming Finite Element Method for Solving Maxwell's Equations with Non-H1 Solution , 2018, SIAM J. Sci. Comput..

[51]  Michael Neilan,et al.  Inf-Sup Stable Finite Elements on Barycentric Refinements Producing Divergence-Free Approximations in Arbitrary Dimensions , 2017, SIAM J. Numer. Anal..

[52]  Kaibo Hu,et al.  Generalized finite element systems for smooth differential forms and Stokes’ problem , 2016, Numerische Mathematik.

[53]  Morten Hjorth-Jensen Eigenvalue Problems , 2021, Explorations in Numerical Analysis.

[54]  L. Ridgway Scott,et al.  The Scott-Vogelius finite elements revisited , 2017, Math. Comput..

[55]  Guosheng Fu,et al.  Exact smooth piecewise polynomial sequences on Alfeld splits , 2018, Math. Comput..