Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov.

Four closely related species, Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis, form a clade within the family Vibrionaceae; the taxonomic status and phylogenetic position of this clade have remained ambiguous for many years. To resolve this ambiguity, we tested these species against other species of the Vibrionaceae for phylogenetic and phenotypic differences. Sequence identities for the 16S rRNA gene were > or =97.4 % among members of the V. fischeri group, but were < or =95.5 % for members of this group in comparison with type species of other genera of the Vibrionaceae (i.e. Photobacterium and Vibrio, with which they overlap in G+C content, and Enterovibrio, Grimontia and Salinivibrio, with which they do not overlap in G+C content). Combined analysis of the recA, rpoA, pyrH, gyrB and 16S rRNA gene sequences revealed that the species of the V. fischeri group form a tightly clustered clade, distinct from these other genera. Furthermore, phenotypic traits differentiated the V. fischeri group from other genera of the Vibrionaceae, and a panel of 13 biochemical tests discriminated members of the V. fischeri group from type strains of Photobacterium and Vibrio. These results indicate that the four species of the V. fischeri group represent a lineage within the Vibrionaceae that is distinct from other genera. We therefore propose their reclassification in a new genus, Aliivibrio gen. nov. Aliivibrio is composed of four species: Aliivibrio fischeri comb. nov. (the type species) (type strain ATCC 7744(T) =CAIM 329(T) =CCUG 13450(T) =CIP 103206(T) =DSM 507(T) =LMG 4414(T) =NCIMB 1281(T)), Aliivibrio logei comb. nov. (type strain ATCC 29985(T) =CCUG 20283(T) =CIP 104991(T) =NCIMB 2252(T)), Aliivibrio salmonicida comb. nov. (type strain ATCC 43839(T) =CIP 103166(T) =LMG 14010(T) =NCIMB 2262(T)) and Aliivibrio wodanis comb. nov. (type strain ATCC BAA-104(T) =NCIMB 13582(T) =LMG 24053(T)).

[1]  P. Dunlap,et al.  Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. , 2005, Environmental microbiology.

[2]  G. Giribet,et al.  TNT: Tree Analysis Using New Technology , 2005 .

[3]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[4]  P. de Vos,et al.  Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae. , 2002, International journal of systematic and evolutionary microbiology.

[5]  S. Bang,et al.  Reevaluation of the taxonomy ofVibrio, beneckea, andPhotobacterium: Abolition of the genusBeneckea , 1980, Current Microbiology.

[6]  A. Danchin,et al.  The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens , 2003, Nature Biotechnology.

[7]  B. Patel,et al.  Salinivibrio costicola subsp. vallismortis subsp. nov., a halotolerant facultative anaerobe from Death Valley, and emended description of Salinivibrio costicola. , 2000, International journal of systematic and evolutionary microbiology.

[8]  J. M. Shewan,et al.  The Identification, Taxonomy and Classification of Luminous Bacteria , 1970 .

[9]  A. Graybeal,et al.  Is it better to add taxa or characters to a difficult phylogenetic problem? , 1998, Systematic biology.

[10]  E. Greenberg,et al.  Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  W. Wheeler OPTIMIZATION ALIGNMENT: THE END OF MULTIPLE SEQUENCE ALIGNMENT IN PHYLOGENETICS? , 1996 .

[12]  P. Baumann,et al.  Taxonomy of the marine, luminous bacteria , 1973, Archiv für Mikrobiologie.

[13]  K. Nealson,et al.  Phenotypic characterization ofPhotobacterium logei (sp. nov.), a species related toP. fischeri , 1978, Current Microbiology.

[14]  T. N. Bryant PIBWin -- software for probabilistic identification. , 2004, Journal of applied microbiology.

[15]  D. Hillis,et al.  Taxonomic sampling, phylogenetic accuracy, and investigator bias. , 1998, Systematic biology.

[16]  J. Farris,et al.  PARSIMONY JACKKNIFING OUTPERFORMS NEIGHBOR‐JOINING , 1996, Cladistics : the international journal of the Willi Hennig Society.

[17]  D. Gevers,et al.  Phylogeny and Molecular Identification of Vibrios on the Basis of Multilocus Sequence Analysis , 2005, Applied and Environmental Microbiology.

[18]  T. N. Bryant,et al.  Software for the development and evaluation of probabilistic identification matrices , 1991, Comput. Appl. Biosci..

[19]  P. Baumann,et al.  Biology of the marine enterobacteria: genera Beneckea and Photobacterium. , 1977, Annual review of microbiology.

[20]  E. Ruby,et al.  Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. , 1976, The Biological bulletin.

[21]  A. Steigerwalt,et al.  Phenotypic and genotypic characterization of Vibrio viscosus sp. nov. and Vibrio wodanis sp. nov. isolated from Atlantic salmon (Salmo salar) with 'winter ulcer'. , 2000, International journal of systematic and evolutionary microbiology.

[22]  J. T. Staley,et al.  Genus II. Photobacterium Beijerinck 1889, 401AL , 2005 .

[23]  S. Bascomb,et al.  Identification of bacteria by computer: theory and programming. , 1973, Journal of general microbiology.

[24]  E. Egidius,et al.  Vibrio salmonicida sp. nov., a New Fish Pathogen , 1986 .