Inference in High Dimensions with the Penalized Score Test

In recent years, there has been considerable theoretical development regarding variable selection consistency of penalized regression techniques, such as the lasso. However, there has been relatively little work on quantifying the uncertainty in these selection procedures. In this paper, we propose a new method for inference in high dimensions using a score test based on penalized regression. In this test, we perform penalized regression of an outcome on all but a single feature, and test for correlation of the residuals with the held-out feature. This procedure is applied to each feature in turn. Interestingly, when an $\ell_1$ penalty is used, the sparsity pattern of the lasso corresponds exactly to a decision based on the proposed test. Further, when an $\ell_2$ penalty is used, the test corresponds precisely to a score test in a mixed effects model, in which the effects of all but one feature are assumed to be random. We formulate the hypothesis being tested as a compromise between the null hypotheses tested in simple linear regression on each feature and in multiple linear regression on all features, and develop reference distributions for some well-known penalties. We also examine the behavior of the test on real and simulated data.

[1]  Richard A. Berk,et al.  Statistical Inference After Model Selection , 2010 .

[2]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[3]  J. Hodges,et al.  Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love , 2010 .

[4]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[5]  B. M. Pötscher,et al.  MODEL SELECTION AND INFERENCE: FACTS AND FICTION , 2005, Econometric Theory.

[6]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[7]  A. Buja,et al.  Valid post-selection inference , 2013, 1306.1059.

[8]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[9]  S. Geer,et al.  On asymptotically optimal confidence regions and tests for high-dimensional models , 2013, 1303.0518.

[10]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[11]  H. Zou,et al.  One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.

[12]  D. Heckerman,et al.  Efficient Control of Population Structure in Model Organism Association Mapping , 2008, Genetics.

[13]  Adel Javanmard,et al.  Confidence intervals and hypothesis testing for high-dimensional regression , 2013, J. Mach. Learn. Res..

[14]  Dennis L. Sun,et al.  Exact post-selection inference, with application to the lasso , 2013, 1311.6238.

[15]  N. Meinshausen,et al.  Stability selection , 2008, 0809.2932.

[16]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[17]  R. Tibshirani The Lasso Problem and Uniqueness , 2012, 1206.0313.

[18]  Benedikt M. Pötscher,et al.  On the Distribution of Penalized Maximum Likelihood Estimators: The LASSO, SCAD, and Thresholding , 2007, J. Multivar. Anal..

[19]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[20]  Cun-Hui Zhang,et al.  Confidence Intervals for Low-Dimensional Parameters With High-Dimensional Data , 2011 .

[21]  H. Kang,et al.  Variance component model to account for sample structure in genome-wide association studies , 2010, Nature Genetics.

[22]  Cun-Hui Zhang,et al.  Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.

[23]  Jianqing Fan,et al.  Variance estimation using refitted cross‐validation in ultrahigh dimensional regression , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[24]  S. Lahiri,et al.  Bootstrapping Lasso Estimators , 2011 .

[25]  Donald W. K. Andrews,et al.  Hybrid and Size-Corrected Subsampling Methods , 2007 .

[26]  T. Hastie,et al.  SparseNet: Coordinate Descent With Nonconvex Penalties , 2011, Journal of the American Statistical Association.

[27]  R. Tibshirani,et al.  A SIGNIFICANCE TEST FOR THE LASSO. , 2013, Annals of statistics.

[28]  Norman R. Draper,et al.  Ridge Regression and James-Stein Estimation: Review and Comments , 1979 .

[29]  D. Ruppert,et al.  Penalized Spline Estimation for Partially Linear Single-Index Models , 2002 .

[30]  R. Tibshirani,et al.  Degrees of freedom in lasso problems , 2011, 1111.0653.

[31]  Jian Huang,et al.  COORDINATE DESCENT ALGORITHMS FOR NONCONVEX PENALIZED REGRESSION, WITH APPLICATIONS TO BIOLOGICAL FEATURE SELECTION. , 2011, The annals of applied statistics.

[32]  Robert Tibshirani,et al.  STANDARDIZATION AND THE GROUP LASSO PENALTY. , 2012, Statistica Sinica.

[33]  J. Kuelbs,et al.  Asymptotic inference for high-dimensional data , 2010, 1002.4554.

[34]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[35]  Sara van de Geer,et al.  Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .

[36]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[37]  Francis R. Bach,et al.  Bolasso: model consistent Lasso estimation through the bootstrap , 2008, ICML '08.

[38]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .