High capacity VO2(B) nanostrips synthesized by microwave-hydrothermal method

VO2(B) nanostrips were synthesized by microwave-hydrothermal method. The XRD patterns show that VO2(B) nanostrips are pure metastable monoclinic phase. VO2(B) nanostrips, in length of 1.5–2[Formula: see text][Formula: see text]m, width of 200–400[Formula: see text]nm, and thickness of 10–20[Formula: see text]nm, present exposed (001) facets and parallel alignment structure. The VO2(B) nanostrips are composed of nanosheets with 2–5[Formula: see text]nm thickness. A very high initial discharge capacity of 318.3[Formula: see text]mAh[Formula: see text]g[Formula: see text] is obtained and the capacity of 100th cycle is 248.5[Formula: see text]mAh[Formula: see text]g[Formula: see text] (about 78.0% retention) at 50[Formula: see text]mA[Formula: see text]g[Formula: see text]. The capacity fades at about 4.08% per cycle for the first 10 cycles. After 10 cycles, the fading slows down to 0.32% per cycle. The rate performance shows the first discharge capacities of VO2(B) nanostrips are 249.6, 212.0, 181.8, 161.7, and 145.2[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 0.1, 0.2, 0.4, 0.8, and 1.6[Formula: see text]A[Formula: see text]g[Formula: see text], respectively, with around 100% coulombic efficiency. Glycerol and microwave-hydrothermal method contribute to the shaping and thickness of VO2(B) nanostrips with the parallel alignment nanostructure, which directly improves the electrical properties of this material.

[1]  S. Petrovic Lithium Batteries , 2020, Battery Technology Crash Course.

[2]  Huanqiao Song,et al.  High Rate and Stable Li-Ion Insertion in Oxygen-Deficient LiV3O8 Nanosheets as a Cathode Material for Lithium-Ion Battery. , 2017, ACS applied materials & interfaces.

[3]  Rui He,et al.  Effects of Cr2O3-modified LiNi1/3Co1/3Mn1/3O2 cathode materials on the electrochemical performance of lithium-ion batteries , 2017, Journal of Materials Science.

[4]  Chengcong Ye,et al.  Hydrothermal synthesis of reduced graphene oxide-LiNi0.5Mn1.5O4 composites as 5 V cathode materials for Li-ion batteries , 2017, Journal of Materials Science.

[5]  Jiming Lu,et al.  Synthesis and optimization of three-dimensional lamellar LiFePO4 and nanocarbon composite cathode materials by polyol process , 2016 .

[6]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[7]  Feng Chen,et al.  Microwave-assisted preparation of inorganic nanostructures in liquid phase. , 2014, Chemical reviews.

[8]  J. Dawson,et al.  Effects of cationic substitution on structural defects in layered cathode materials LiNiO2 , 2014 .

[9]  S. Dou,et al.  Cathode materials for next generation lithium ion batteries , 2013 .

[10]  Ashoka Siddaramanna,et al.  One step synthesis of monoclinic VO2 (B) bundles of nanorods: Cathode for Li ion battery , 2012 .

[11]  Hongmei Du,et al.  Facile synthesis of VO2(B)/carbon nanobelts with high capacity and good cyclability , 2012 .

[12]  Chun-hua Chen,et al.  Three-dimensional porous V2O5 cathode with ultra high rate capability , 2011 .

[13]  Ziqiang Zhu,et al.  Hydrothermal synthesis of VO2 (B) nanostructures and application in aqueous Li-ion battery , 2011 .

[14]  Huakun Liu,et al.  Enhanced lithium storage in a VO2(B)-multiwall carbon nanotube microsheet composite prepared via an in situ hydrothermal process , 2010 .

[15]  F. Sediri,et al.  Controlled hydrothermal synthesis of VO2(B) nanobelts , 2009 .

[16]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[17]  Heon-Jin Choi,et al.  Combustion synthesis of spinel LiMn2O4 cathode materials for lithium secondary batteries , 2001 .

[18]  Alan V. Chadwick,et al.  On the behavior of the LixNiO2 system: an electrochemical and structural overview , 1997 .

[19]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[20]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .