Photovoltaic cells based on the blend of MEH-PPV and polymers with substituents containing C60 moieties

Abstract Polymer photovoltaic cells (PVCs) were fabricated and characterized using a blend of MEH-PPV and C60-substituted conjugated polymers. In the C60-containing polymers, C60 is attached to the conjugated polymer main chain via alkyoxyl or alkyl side chain. The action spectrum indicates that both polymers contribute to the light absorption in the PVCs. The polymer PVCs show a fill factor of 27%, and white-light energy conversion efficiency of 0.01% under the irradiation of 88 mW/cm2, with collection efficiency of 2% at around 470 nm.

[1]  Siegfried Karg,et al.  Light-emitting diodes based on poly-p-phenylene-vinylene: I. Charge-carrier injection and transport , 1997 .

[2]  Chunhe Yang,et al.  Improvement of the performance of polymer/C60 photovoltaic cells by small-molecule doping , 2003 .

[3]  O. Inganäs,et al.  Self organised polymer photodiodes for extended spectral coverage , 2000 .

[4]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[5]  Richard H. Friend,et al.  Photovoltaic Performance and Morphology of Polyfluorene Blends: A Combined Microscopic and Photovoltaic Investigation , 2001 .

[6]  Alan J. Heeger,et al.  DUAL-FUNCTION SEMICONDUCTING POLYMER DEVICES : LIGHT-EMITTING AND PHOTODETECTING DIODES , 1994 .

[7]  R. Loutfy,et al.  Phthalocyanine organic solar cells: Indium/x‐metal free phthalocyanine Schottky barriers , 1981 .

[8]  C. Brabec,et al.  Effect of LiF/metal electrodes on the performance of plastic solar cells , 2002 .

[9]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.

[10]  N. S. Sariciftci,et al.  Double-cable polymers for fullerene based organic optoelectronic applications , 2002 .

[11]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[12]  Alan J. Heeger,et al.  Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions , 1995 .

[13]  Thomas Fromherz,et al.  The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes , 2001 .

[14]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[15]  Raj René Janssen,et al.  Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells , 2001 .

[16]  M. Prato,et al.  Ring Expansion of the Fullerene Core by Highly Regioselective Formation of Diazafulleroids , 1995 .

[17]  J. Hummelen,et al.  Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes. , 2001, Journal of the American Chemical Society.

[18]  Daoben Zhu,et al.  Photophysical characteristics of soluble oligo(p-phenylenevinylene)-fullerene dyad , 2001 .

[19]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[20]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[21]  R. Friend,et al.  Efficient light harvesting in a photovoltaic diode composed of a semiconductor conjugated copolymer blend , 2002 .

[22]  R. W. Jackson,et al.  Chemical tuning of the electronic properties of poly(p-phenylenevinylene)-based copolymers , 1993 .

[23]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[24]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[25]  L. S. Roman,et al.  Excitation transfer in polymer photodiodes for enhanced quantum efficiency , 2000 .