Genetic algorithm for affine point pattern matching

Point pattern matching (PPM) is an important topic in the fields of computer vision and pattern recognition. According to if there exists a one to one mapping between the two point sets to be matched, PPM can be divided into the case of complete matching and the case of incomplete matching. According to if utilizing information other than 2-D image coordinates, PPM can be divided into labelled point-matching case and unlabelled point-matching case. Using partial Hausdorff distance, this paper presents a genetic algorithm (GA) based method to solve the incomplete unlabelled matching problem under general affine transformation. Since it successfully reduces the solution space of GA by constructing 'feature ellipses' of point sets, the method can achieve high computing efficiency and good matching results. Theoretical analysis and simulation results show that the new algorithm is very effective.

[1]  A. Ardeshir Goshtasby,et al.  Point pattern matching using convex hull edges , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  John J. Grefenstette,et al.  Genetic Search with Approximate Function Evaluation , 1985, ICGA.

[3]  J. C. Simon,et al.  A method of comparing two patterns independent of possible transformations and small distortions , 1972, Pattern Recognit..

[4]  Peter Wai-Ming Tsang,et al.  A genetic algorithm for affine invariant recognition of object shapes from broken boundaries , 1997, Pattern Recognit. Lett..

[5]  Jiawei Hong,et al.  A new approach to point pattern matching , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[6]  Azriel Rosenfeld,et al.  Some experiments in relaxation image matching using corner features , 1983, Pattern Recognit..

[7]  Sujoy Ghose,et al.  Point matching using asymmetric neural networks , 1993, Pattern Recognit..

[8]  Salvatore D. Morgera,et al.  Rigid body constrained noisy point pattern matching , 1995, IEEE Trans. Image Process..

[9]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[10]  Charles T. Zahn,et al.  An Algorithm for Noisy Template Matching , 1974, IFIP Congress.

[11]  Bir Bhanu,et al.  Self-Optimizing Image Segmentation System Using a Genetic Algorithm , 1991, International Conference on Genetic Algorithms.

[12]  Christopher J. Taylor,et al.  Model-based image interpretation using genetic algorithms , 1992, Image Vis. Comput..

[13]  徐文立,et al.  Point pattern Matching Using Irreducible Matrix and Relative Invariant , 1999 .

[14]  Fionn Murtagh,et al.  A New Approach to Point Pattern Matching , 1992 .

[15]  Xu Wenli,et al.  A geometric reasoning based algorithm for point pattern matching , 2001 .

[16]  Fang-Hsuan Cheng,et al.  Fast algorithm for point pattern matching: Invariant to translations, rotations and scale changes , 1997, Pattern Recognit..

[17]  Yehezkel Lamdan,et al.  Object recognition by affine invariant matching , 2011, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  Paul M. Griffin,et al.  Point pattern matching using centroid bounding , 1989, IEEE Trans. Syst. Man Cybern..

[20]  Laveen N. Kanal,et al.  Recognition of spatial point patterns , 1983, Pattern Recognit..

[21]  P.W.M. Tsang,et al.  A genetic algorithm for affine invariant object shape recognition , 1995 .

[22]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Christopher J. Taylor,et al.  Model-based image interpretation using genetic algorithms , 1992, Image Vis. Comput..

[24]  Daniel P. Huttenlocher,et al.  Fast affine point matching: an output-sensitive method , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Michael Werman,et al.  Affine point matching , 1994, Pattern Recognit. Lett..

[26]  George C. Stockman,et al.  Matching Images to Models for Registration and Object Detection via Clustering , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Mike D. Atkinson,et al.  An Optimal Algorithm for Geometrical Congruence , 1987, J. Algorithms.