Diffusion limit for the radiative transfer equation perturbed by a Markovian process

We study the stochastic diffusive limit of a kinetic radiative transfer equation, which is non linear, involving a small parameter and perturbed by a smooth random term. Under an appropriate scaling for the small parameter, using a generalization of the perturbed test-functions method, we show the convergence in law to a stochastic non linear fluid limit.

[1]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[2]  Martin Hairer,et al.  A Wong-Zakai theorem for stochastic PDEs , 2014, Journal of the Mathematical Society of Japan.

[3]  Pierre Degond,et al.  Diffusion limit for non homogeneous and non-micro-reversible processes , 2000 .

[4]  Sylvain de Moor,et al.  Diffusion limit for the radiative transfer equation perturbed by a Wiener process , 2014, 1405.2191.

[5]  A. D. Bouard,et al.  A diffusion approximation theorem for a nonlinear PDE with application to random birefringent optical fibers , 2011, 1105.4048.

[6]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[7]  B. Perthame,et al.  The rosseland approximation for the radiative transfer equations , 1987 .

[8]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[10]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[11]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[12]  Harold J. Kushner,et al.  Approximation and Weak Convergence Methods for Random Processes , 1984 .

[13]  P. Jabin Averaging Lemmas and Dispersion Estimates for kinetic equations , 2009 .

[14]  Arnaud Debussche,et al.  A Regularity Result for Quasilinear Stochastic Partial Differential Equations of Parabolic Type , 2014, SIAM J. Math. Anal..

[15]  Josselin Garnier,et al.  Wave Propagation and Time Reversal in Randomly Layered Media , 2007 .

[16]  A. Debussche,et al.  Diffusion limit for a stochastic kinetic problem , 2011, 1103.2664.

[17]  B. Perthame,et al.  The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation , 1988 .