Some asymptotic theory for Silverman's smoothed functional principal components in an abstract Hilbert space

Unlike classical principal component analysis (PCA) for multivariate data, one needs to smooth or regularize when estimating functional principal components. Silverman's method for smoothed functional principal components has nice theoretical and practical properties. Some theoretical properties of Silverman's method were obtained using tools in the L 2 and the Sobolev spaces. This paper proposes an approach, in a general manner, to study the asymptotic properties of Silverman's method in an abstract Hilbert space. This is achieved by exploiting the perturbation results of the eigenvalues and the corresponding eigenvectors of a covariance operator. Consistency and asymptotic distributions of the estimators are derived under mild conditions. First we restrict our attention to the first smoothed functional principal component and then extend the same method for the first K smoothed functional principal components.

[1]  A. Cuevas A partial overview of the theory of statistics with functional data , 2014 .

[2]  Aldo Goia,et al.  An introduction to recent advances in high/infinite dimensional statistics , 2016, J. Multivar. Anal..

[3]  P. Hall,et al.  On properties of functional principal components analysis , 2006 .

[4]  Momiao Xiong,et al.  Smoothed functional principal component analysis for testing association of the entire allelic spectrum of genetic variation , 2012, European Journal of Human Genetics.

[5]  R. Fraiman,et al.  Kernel-based functional principal components ( , 2000 .

[6]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[7]  F. Yao,et al.  Penalized spline models for functional principal component analysis , 2006 .

[8]  Ana M. Aguilera,et al.  Functional Principal Components Analysis by Choice of Norm , 1999 .

[9]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[10]  Salvatore Ingrassia,et al.  Functional Principal Component Analysis of Financial Time Series , 2005 .

[11]  H. Müller,et al.  Functional quadratic regression , 2010 .

[12]  Philippe Vieu,et al.  Nonparametric time series prediction: A semi-functional partial linear modeling , 2008 .

[13]  David E. Tyler,et al.  Robust functional principal components: A projection-pursuit approach , 2011, 1203.2027.

[14]  Piotr Kokoszka,et al.  Asymptotic normality of the principal components of functional time series , 2013 .

[15]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.

[16]  David S. Gilliam,et al.  The Fréchet Derivative of an Analytic Function of a Bounded Operator with Some Applications , 2009, Int. J. Math. Math. Sci..

[17]  M. C. Aguilera-Morillo,et al.  Penalized PCA approaches for B-spline expansions of smooth functional data , 2013, Appl. Math. Comput..

[18]  J. Ramsay,et al.  Principal components analysis of sampled functions , 1986 .

[19]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[20]  P. Reiss,et al.  Functional Principal Component Regression and Functional Partial Least Squares , 2007 .

[21]  C. Lanczos Applied Analysis , 1961 .

[22]  J. Schwartz,et al.  Spectral theory : self adjoint operators in Hilbert space , 1963 .

[23]  Ana M. Aguilera,et al.  Computational considerations in functional principal component analysis , 2007, Comput. Stat..

[24]  B. Silverman,et al.  Smoothed functional principal components analysis by choice of norm , 1996 .

[25]  J. Ramsay,et al.  Some Tools for Functional Data Analysis , 1991 .

[26]  K. J. Utikal,et al.  Inference for Density Families Using Functional Principal Component Analysis , 2001 .

[27]  E. A. Sylvestre,et al.  Principal modes of variation for processes with continuous sample curves , 1986 .

[28]  Deville Méthodes statistiques et numériques de l'analyse harmonique , 1974 .

[29]  Hongyu Zhao,et al.  Some theoretical properties of Silverman's method for Smoothed functional principal component analysis , 2011, J. Multivar. Anal..

[30]  彰 五十嵐 N. Dunford and J. T. Schwartz (with the assistance of W. G. Bade and R. G. Bartle): Linear Operators. : Part II. Spectral Theoty. Self Adjoint Operators in Hilbert Space. Interscience. 1963. X+1065+7頁, 16×23.5cm, 14,000円。 , 1964 .

[31]  Jianhua Z. Huang,et al.  Functional principal components analysis via penalized rank one approximation , 2008, 0807.4862.

[32]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[33]  T. Hsing,et al.  Theoretical foundations of functional data analysis, with an introduction to linear operators , 2015 .

[34]  P. Sarda,et al.  Functional linear model , 1999 .

[35]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[36]  V. V. Zhikov,et al.  Weighted Sobolev spaces , 1998 .

[37]  P. Vieu,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .