Approximating Uniform Triangular Meshes in Polygons

Given a convex polygon P in the plane and a positive integer n, we consider the problem of generating a length-uniform triangular mesh for the interior of P using n Steiner points. More specifically, we want to find both a set S n of n points inside P, and a triangulation of P using S n , with respect to the following minimization criteria: (1) ratio of the maximum edge length to the minimum one, (2) maximum edge length, and (3) maximum triangle perimeter.

[1]  David S. Johnson The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.

[2]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[3]  Elefterios A. Melissaratos,et al.  Coping with inconsistencies: a new approach to produce quality triangulations of polygonal domains with holes , 1992, SCG '92.

[4]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[5]  David Eppstein,et al.  Provably Good Mesh Generation , 1994, J. Comput. Syst. Sci..

[6]  J. W. Butterworth,et al.  The traviation process , 1997 .

[7]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[8]  K. F. Roth On a Problem of Heilbronn , 1951 .

[9]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[10]  David Eppstein,et al.  Triangulating polygons without large angles , 1995, Int. J. Comput. Geom. Appl..

[11]  Tiow Seng Tan,et al.  A Quadratic Time Algorithm for the Minimax Length Triangulation , 1993, SIAM J. Comput..

[12]  David Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[13]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[14]  Makoto Ohsaki,et al.  Shape Optimization of a Double-Layer Space Truss Described by a Parametric Surface , 1997 .

[15]  Marshall W. Bern,et al.  Linear-size nonobtuse triangulation of polygons , 1994, SCG '94.