Design of a Reconfigurable Assembly Cell for Multiple Aerostructures

[1]  Marc H. Meyer,et al.  The power of product platforms : building value and cost leadership , 1997 .

[2]  Ahmed M. Deif,et al.  A Systematic Design Approach for Reconfigurable Manufacturing Systems , 2006 .

[3]  Jody Muelaner,et al.  METROLOGY ENHANCED TOOLING FOR AEROSPACE (META): A LIVE FIXTURING, WING BOX ASSEMBLY CASE STUDY , 2011 .

[4]  Jody Muelaner,et al.  Design for measurement assisted determinate assembly (MADA) of large composite structures , 2010 .

[5]  Greg Adams,et al.  Mobile Automated Robotic Drilling, Inspection, and Fastening , 2013 .

[6]  Yoram Koren,et al.  Co-Evolution of Product Families and Assembly Systems , 2007 .

[7]  Ryan Haldimann,et al.  Utilization of a Vision System to Automate Mobile Machine Tools , 2014 .

[8]  Hans-Peter Wiendahl,et al.  Changeable and Reconfigurable Assembly Systems , 2009 .

[9]  Henrik Kihlman,et al.  Development of Automated Flexible Tooling as Enabler in Wing Box Assembly , 2016 .

[10]  Svetan M. Ratchev,et al.  An integrated product–process design methodology for cost-effective product realisation , 2012, Int. J. Comput. Integr. Manuf..

[11]  Lihui Wang,et al.  Current status of reconfigurable assembly systems , 2007, Int. J. Manuf. Res..

[12]  H. ElMaraghy,et al.  Product family formation for reconfigurable assembly systems , 2014 .

[13]  T. P. Meichsner,et al.  Migration Manufacturing – A New Concept for Automotive Body Production , 2009 .

[14]  Richard Curran,et al.  An integrated systems engineering approach to aircraft design , 2006 .

[15]  Richard Curran,et al.  An Integrated Lean Approach to Aerospace Assembly Jig and Work Cell Design Using Digital Manufacturing , 2008 .

[16]  Sukhan Lee,et al.  Frontiers of Assembly and Manufacturing , 2010 .

[17]  Waguih ElMaraghy,et al.  Design Method of Under-Body Platform Automotive Framing Systems , 2014 .

[18]  Günther Schuh,et al.  Future Trends in Production Engineering , 2013 .

[19]  Karen Willcox,et al.  A VALUE-BASED APPROACH FOR COMMERCIAL AIRCRAFT CONCEPTUAL DESIGN , 2002 .

[20]  Mats Björkman,et al.  Design for Manufacturing of Composite Structures for Commercial Aircraft – The Development of a DFM Strategy at SAAB Aerostructures , 2014 .

[21]  Svetan M. Ratchev,et al.  Towards the derivation of an integrated design and manufacturing methodology , 2013, International journal of computer integrated manufacturing (Print).

[22]  Zahed Siddique,et al.  Product Platform and Product Family Design , 2006 .

[23]  Greg Adams,et al.  Next Generation Mobile Robotic Drilling and Fastening Systems , 2014 .

[24]  Svetan Ratchev,et al.  Fixturing and tooling for wing assembly with reconfigurable datum system pickup , 2011 .

[25]  Svetan Ratchev,et al.  Flexible Tooling for Wing Box Rib Clamping and Drilling , 2011 .

[26]  Colm McKeown,et al.  A reactive reconfigurable tool for aerospace structures , 2011 .

[27]  Bernard Anselmetti,et al.  Aid tool for the design of process and aircraft assembly lines , 2012 .

[28]  Zahed Siddique,et al.  Product platform and product family design : methods and applications , 2010 .

[29]  Russell Devlieg,et al.  Expanding the Use of Robotics in Airframe Assembly Via Accurate Robot Technology , 2010 .

[30]  Magnus Engström,et al.  Flexapods - Flexible Tooling at SAAB for Building the NEURON Aircraft , 2010 .

[31]  Lloyd R. Jenkinson,et al.  Civil jet aircraft design , 1999 .

[32]  Jesús Racero,et al.  A systematic approach for product families formation in Reconfigurable Manufacturing Systems , 2007 .

[33]  Zahed Siddique,et al.  Advances in product family and product platform design: Methods & applications , 2014 .

[34]  Magnus Engström,et al.  Affordable Reconfigurable Tooling , 2002 .

[35]  Masood Ashraf,et al.  Product family formation based on multiple product similarities for a reconfigurable manufacturing system , 2015 .

[36]  Carmen Constantinescu,et al.  Deriving a Systematic Approach to Changeable Manufacturing System Design , 2014 .

[37]  Thomas G. Jefferson,et al.  Axiomatic Design of a Reconfigurable Assembly System for Primary Wing Structures , 2014 .

[38]  Luís Gonzaga Trabasso,et al.  A customized QFD (quality function deployment) applied to management of automation projects , 2016 .

[39]  Benjamen Hempstead,et al.  Composite Automatic Wing Drilling Equipment (CAWDE) , 2006 .

[40]  Chad J. R. Ohlandt,et al.  Ready for Takeoff: China's Advancing Aerospace Industry , 2011 .

[41]  Mark Lawrence,et al.  Air pollution: Clean up our skies , 2014, Nature.

[42]  Yoram Koren,et al.  Design of reconfigurable manufacturing systems , 2010 .

[43]  Svetan Ratchev,et al.  Reconfigurable Assembly System Design Methodology: A Wing Assembly Case Study , 2015 .

[44]  Michael Chun-Yung Niu,et al.  Airframe Structural Design: Practical Design Information and Data on Aircraft Structures , 1988 .

[45]  Anatoli I. Dashchenko,et al.  Reconfigurable manufacturing systems and transformable factories , 2006 .

[46]  Jody Muelaner,et al.  A new paradigm in large-scale assembly—research priorities in measurement assisted assembly , 2014 .

[47]  Henrik Kihlman,et al.  Reconfigurable Flexible Tooling for Aerospace Wing Assembly , 2009 .

[48]  B. Wilhelm,et al.  Platform and Modular Concepts at Volkswagen — Their Effects on the Assembly Process , 1997 .

[49]  Svetan Ratchev,et al.  Review of Reconfigurable Assembly Systems Technologies for Cost Effective Wing Structure Assembly , 2013 .

[50]  Kyle A. Jeffries,et al.  Enhanced Robotic Automated Fiber Placement with Accurate Robot Technology and Modular Fiber Placement Head , 2013 .