Emergent phenomena in multicomponent superconductivity: an introduction to the focus issue

Multicomponent superconductivity is a novel quantum phenomenon in many different superconducting materials, such as multiband ones in which different superconducting gaps open in different Fermi surfaces, films engineered at the atomic scale to enter the quantum confined regime, multilayers, two-dimensional electron gases at the oxide interfaces, and complex materials in which different electronic orbitals or different carriers participate in the formation of the superconducting condensate. In all these systems the increased number of degrees of freedom of the multicomponent superconducting wave-function allows for emergent quantum effects that are otherwise unattainable in single-component superconductors. In this editorial paper we introduce the present focus issue, exploring the complex but fascinating physics of multicomponent superconductivity.

[1]  Mihail D. Croitoru,et al.  Atomically flat superconducting nanofilms: multiband properties and mean-field theory , 2015 .

[2]  Y. Tanaka,et al.  Multicomponent superconductivity based on multiband superconductors , 2015 .

[3]  T. Taen,et al.  Evolution of superconducting and transport properties in annealed FeTe1−xSex (0.1 ≤ x ≤ 0.4) multiband superconductors , 2015, 1502.04284.

[4]  Z. Guguchia,et al.  Probing the multi gap behavior within ‘11’ and ‘122’ families of iron based superconductors: the muon-spin rotation studies , 2015 .

[5]  V. Moshchalkov,et al.  Superconducting properties of Nb/Pb/Nb trilayer , 2015 .

[6]  V. Stanev Time-reversal symmetry breaking state in dirty three-band superconductor , 2015, 1508.01517.

[7]  S. Hurand,et al.  Inhomogeneous multi carrier superconductivity at LaXO3/SrTiO3 (X = Al or Ti) oxide interfaces , 2015, 1502.07572.

[8]  F. Peeters,et al.  Distinct magnetic signatures of fractional vortex configurations in multiband superconductors , 2014, 1503.00047.

[9]  A. Maeda,et al.  Point-contact Andreev-reflection spectroscopy in Fe(Te,Se) films: multiband superconductivity and electron-boson coupling , 2014, 1412.4667.

[10]  M. Tanatar,et al.  Doping-evolution of the superconducting gap in single crystals of (Ca1−xLa x )10(Pt3As8)(Fe2As2)5 superconductor from London penetration depth measurements , 2014 .

[11]  A. Bianconi,et al.  Intrinsic arrested nanoscale phase separation near a topological Lifshitz transition in strongly correlated two-band metals , 2014, 1409.5770.

[12]  A. Varlamov,et al.  Fluctuations in two-band superconductors in strong magnetic field , 2014, 1408.1633.

[13]  M. Doria,et al.  Coexistence of magnetic and charge order in a two-component order parameter description of the layered superconductors , 2014, 1408.1317.

[14]  L. Taillefer,et al.  Isotropic multi-gap superconductivity in BaFe1.9Pt0.1As2 from thermal transport and spectroscopic measurements , 2014, 1407.6414.

[15]  A. Perali,et al.  Band-edge BCS–BEC crossover in a two-band superconductor: physical properties and detection parameters , 2014, 1407.3109.

[16]  L. Benfatto,et al.  Anisotropy of the superconducting fluctuations in multiband superconductors: the case of LiFeAs , 2014, 1407.2187.

[17]  M. Milovsevi'c,et al.  Vortex states in mesoscopic three-band superconductors , 2013, 1308.4981.

[18]  H. Takagi,et al.  Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity , 2013, Scientific Reports.

[19]  G. Giovannetti,et al.  Selective Mott physics as a key to iron superconductors. , 2012, Physical review letters.

[20]  A. Bianconi Shape resonances in superstripes , 2013, Nature Physics.

[21]  C. Castellani,et al.  Leggett modes in iron-based superconductors as a probe of time-reversal symmetry breaking , 2013, 1306.5545.

[22]  S. Hasegawa,et al.  Magnetoresistance measurements of a superconducting surface state of in-induced and Pb-induced structures on Si(111). , 2013, Physical review letters.

[23]  F. Peeters,et al.  Ginzburg-Landau theory for multiband superconductors: Microscopic derivation , 2013, 1304.4032.

[24]  K. Machida,et al.  Multiple-gap structure in electric-field-induced surface superconductivity , 2013, 1301.0639.

[25]  M. Golterman,et al.  Excited-state contribution to the axial-vector and pseudoscalar correlators with two extra pions , 2012, 1209.2258.

[26]  A. Bianconi,et al.  Anomalous isotope effect near a 2.5 Lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes , 2012, 1209.1528.

[27]  M. Milošević,et al.  Stability of fractional vortex states in a two-band mesoscopic superconductor , 2012, 1205.2022.

[28]  F. Peeters,et al.  Two-band superconductors: hidden criticality deep in the superconducting state. , 2012, Physical review letters.

[29]  L. Li,et al.  Scanning Hall probe microscopy of unconventional vortex patterns in the two-gap MgB2 superconductor , 2012 .

[30]  F. Peeters,et al.  Atypical BCS-BEC crossover induced by quantum-size effects , 2012, 1203.3325.

[31]  T. Luu,et al.  S -wave scattering of strangeness − 3 baryons , 2012, 1201.3596.

[32]  Timur K. Kim,et al.  One-Sign Order Parameter in Iron Based Superconductor , 2011, Symmetry.

[33]  D. Podolsky,et al.  Shallow pockets and very strong coupling superconductivity in FeSexTe1−x , 2011, Nature Physics.

[34]  X. Hu,et al.  Phase solitons in multi-band superconductors with and without time-reversal symmetry , 2011, 1111.3850.

[35]  E. Babaev,et al.  Length scales, collective modes, and type-1.5 regimes in three-band superconductors , 2011, 1107.4279.

[36]  Johan Carlström,et al.  Topological solitons in three-band superconductors with broken time reversal symmetry. , 2011, Physical review letters.

[37]  F. Peeters,et al.  Different length scales for order parameters in two-gap superconductors : extended Ginzburg-Landau theory , 2011, 1106.1080.

[38]  G. A. Farias,et al.  Conditions for nonmonotonic vortex interaction in two-band superconductors , 2011, 1105.2403.

[39]  J. Misewich,et al.  Superconductor–insulator transition in La2 − xSrxCuO4 at the pair quantum resistance , 2011, Nature.

[40]  J. Schmalian,et al.  Ginzburg-Landau theory of two-band superconductors: Absence of type-1.5 superconductivity , 2011 .

[41]  F. Peeters,et al.  Extended Ginzburg-Landau formalism for two-band superconductors. , 2011, Physical review letters.

[42]  F. Peeters,et al.  Vortex matter in mesoscopic two-gap superconducting disks: Influence of Josephson and magnetic coupling , 2010, 1005.2921.

[43]  V. Stanev,et al.  Three-band superconductivity and the order parameter that breaks time-reversal symmetry , 2009, 0912.5214.

[44]  V. Moshchalkov,et al.  Type-1.5 superconductivity. , 2009, Physical review letters.

[45]  X. Xi,et al.  Two-band superconductor magnesium diboride , 2008 .

[46]  X. Dai,et al.  Observation of Fermi-surface–dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 , 2008, 0807.0419.

[47]  M. Eisterer Magnetic properties and critical currents of MgB2 , 2007 .

[48]  F. Peeters,et al.  Size-dependent enhancement of superconductivity in Al and Sn nanowires: Shape-resonance effect , 2006 .

[49]  C. Castellani,et al.  Two-gap model for underdoped cuprate superconductors , 1999, cond-mat/9912363.

[50]  A. Bianconi,et al.  The gap amplification at a shape resonance in a superlattice of quantum stripes: A mechanism for high Tc , 1996, 1107.3292.

[51]  A. Leggett Number-Phase Fluctuations in Two-Band Superconductors , 1966 .

[52]  C. Thompson,et al.  Shape Resonances in Superconducting Thin Films , 1963 .

[53]  H. Suhl,et al.  Bardeen-Cooper-Schrieffer Theory of Superconductivity in the Case of Overlapping Bands , 1959 .