Rapid multicomponent T2 analysis of the articular cartilage of the human knee joint at 3.0T

To determine the feasibility of using multicomponent‐driven equilibrium single‐shot observation of T1 and T2 (mcDESPOT) for evaluating the human knee joint at 3.0T and to investigate depth‐dependent and regional‐dependent variations in multicomponent T2 parameters within articular cartilage.

[1]  Y. Qian,et al.  Multicomponent T2* mapping of knee cartilage: Technical feasibility ex vivo , 2010, Magnetic resonance in medicine.

[2]  T. Mosher,et al.  Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping , 2004, Journal of magnetic resonance imaging : JMRI.

[3]  Yang Xia,et al.  On the measurement of multi-component T2 relaxation in cartilage by MR spectroscopy and imaging. , 2010, Magnetic resonance imaging.

[4]  K. Kaufman,et al.  Clinical evaluation of T2 values of patellar cartilage in patients with osteoarthritis. , 2007, Osteoarthritis and cartilage.

[5]  D. Burstein,et al.  Gd‐DTPA2− as a measure of cartilage degradation , 1996, Magnetic resonance in medicine.

[6]  Derek K. Jones,et al.  Gleaning multicomponent T1 and T2 information from steady‐state imaging data , 2008, Magnetic resonance in medicine.

[7]  R. Reddy,et al.  T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. , 2002, Osteoarthritis and cartilage.

[8]  Y. Xia,et al.  Magic-Angle Effect in Magnetic Resonance Imaging of Articular Cartilage: A Review , 2000, Investigative radiology.

[9]  Yang Xia,et al.  Dependencies of multi-component T2 and T1ρ relaxation on the anisotropy of collagen fibrils in bovine nasal cartilage. , 2011, Journal of magnetic resonance.

[10]  R. Spencer,et al.  Improved specificity of cartilage matrix evaluation using multiexponential transverse relaxation analysis applied to pathomimetically degraded cartilage , 2011, NMR in biomedicine.

[11]  G. Bydder,et al.  Ultrashort-echo time MR imaging of the patella with bicomponent analysis: correlation with histopathologic and polarized light microscopic findings. , 2012, Radiology.

[12]  Gaby S Pell,et al.  Optimized clinical T2 relaxometry with a standard CPMG sequence , 2006, Journal of magnetic resonance imaging : JMRI.

[13]  A R Poole,et al.  An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage , 1982, The Journal of cell biology.

[14]  T. Peters,et al.  High‐resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2 , 2005, Magnetic resonance in medicine.

[15]  J. B. Kneeland,et al.  T1ρ‐relaxation in articular cartilage: Effects of enzymatic degradation , 1997, Magnetic resonance in medicine.

[16]  I. Kiviranta,et al.  Delayed gadolinium‐enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: Topographical variation and relationships to mechanical properties , 2004, Magnetic resonance in medicine.

[17]  J Silvennoinen,et al.  T2 relaxation reveals spatial collagen architecture in articular cartilage: A comparative quantitative MRI and polarized light microscopic study , 2001, Magnetic resonance in medicine.

[18]  S. Deoni,et al.  Correction of main and transmit magnetic field (B0 and B1) inhomogeneity effects in multicomponent‐driven equilibrium single‐pulse observation of T1 and T2 , 2011, Magnetic resonance in medicine.

[19]  V. Mlynárik Magic angle effect in articular cartilage. , 2002, AJR. American journal of roentgenology.

[20]  Van,et al.  Spatial variation of T2 in human articular cartilage. , 1997, Radiology.

[21]  C. Glüer,et al.  Detection of changes in cartilage water content using MRI T2-mapping in vivo. , 2002, Osteoarthritis and cartilage.

[22]  S. Deoni,et al.  High‐resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high‐speed incorporation of RF field inhomogeneities (DESPOT1‐HIFI) , 2007, Journal of magnetic resonance imaging : JMRI.

[23]  K. Marshall,et al.  Macromolecule and water magnetization exchange modeling in articular cartilage , 2000, Magnetic resonance in medicine.

[24]  Deborah Burstein,et al.  New MRI Techniques for Imaging Cartilage , 2003, The Journal of bone and joint surgery. American volume.

[25]  Xiaohong Bi,et al.  Fourier transform infrared imaging and MR microscopy studies detect compositional and structural changes in cartilage in a rabbit model of osteoarthritis , 2007, Analytical and bioanalytical chemistry.

[26]  Y. Yamashita,et al.  T1ρ and T2 mapping reveal the in vivo extracellular matrix of articular cartilage , 2012, Journal of magnetic resonance imaging : JMRI.

[27]  K. Fishbein,et al.  Multicomponent T2 relaxation analysis in cartilage , 2009, Magnetic resonance in medicine.

[28]  Olaf Dietrich,et al.  T2 measurement in articular cartilage: Impact of the fitting method on accuracy and precision at low SNR , 2009, Magnetic resonance in medicine.

[29]  W Gründer,et al.  MR‐microscopic visualization of anisotropic internal cartilage structures using the magic angle technique , 1998, Magnetic resonance in medicine.

[30]  D. Burstein,et al.  Molecular (and functional) imaging of articular cartilage. , 2004, Journal of musculoskeletal & neuronal interactions.

[31]  Yang Xia,et al.  Depth‐dependent profiles of glycosaminoglycans in articular cartilage by μMRI and histochemistry , 2008, Journal of magnetic resonance imaging : JMRI.

[32]  S. Majumdar,et al.  T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. , 2004, Radiology.

[33]  S. Deoni,et al.  Transverse relaxation time (T2) mapping in the brain with off‐resonance correction using phase‐cycled steady‐state free precession imaging , 2009, Journal of magnetic resonance imaging : JMRI.

[34]  A Ratcliffe,et al.  Differences in patellofemoral joint cartilage material properties and their significance to the etiology of cartilage surface fibrillation. , 1997, Osteoarthritis and cartilage.

[35]  Jean-Pierre Ruaud,et al.  Effect of proteoglycan depletion on T2 mapping in rat patellar cartilage. , 2005, Radiology.

[36]  D. Burstein,et al.  Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI , 1999, Magnetic resonance in medicine.

[37]  T J Mosher,et al.  Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T. , 2000, Radiology.

[38]  Ping-Chang Lin,et al.  Mapping proteoglycan‐bound water in cartilage: Improved specificity of matrix assessment using multiexponential transverse relaxation analysis , 2010, Magnetic resonance in medicine.

[39]  Youssef Zaim Wadghiri,et al.  Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance. , 2004, AJR. American journal of roentgenology.

[40]  Derek K. Jones,et al.  Investigating the effect of exchange and multicomponent T1 relaxation on the short repetition time spoiled steady‐state signal and the DESPOT1 T1 quantification method , 2007, Journal of magnetic resonance imaging : JMRI.

[41]  J R Matyas,et al.  Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic magnetic resonance imaging and polarised light microscopy , 2004, Annals of the rheumatic diseases.

[42]  S Majumdar,et al.  MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up. , 2007, Osteoarthritis and cartilage.

[43]  M. Mayerhoefer,et al.  Detection of degenerative cartilage disease: comparison of high-resolution morphological MR and quantitative T2 mapping at 3.0 Tesla. , 2010, Osteoarthritis and cartilage.

[44]  R. Ojala,et al.  Topographical variation of T2 relaxation time in the young adult knee cartilage at 1.5 T. , 2009, Osteoarthritis and cartilage.

[45]  R M Henkelman,et al.  Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage. , 1993, Radiology.

[46]  D. Burstein,et al.  Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. , 1997, Radiology.

[47]  Hisham A Alhadlaq,et al.  Orientational dependence of T2 relaxation in articular cartilage: A microscopic MRI (μMRI) study , 2002, Magnetic resonance in medicine.

[48]  V J Schmithorst,et al.  MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. , 2001, AJR. American journal of roentgenology.

[49]  Juha Töyräs,et al.  Spatial assessment of articular cartilage proteoglycans with Gd‐DTPA‐enhanced T1 imaging , 2002, Magnetic resonance in medicine.

[50]  J. B. Kneeland,et al.  Human knee: in vivo T1(rho)-weighted MR imaging at 1.5 T--preliminary experience. , 2001, Radiology.

[51]  Y. Xia,et al.  Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage. , 2001, Osteoarthritis and cartilage.