Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry.

[1]  P. Åstrand,et al.  Zero-point vibrational effects on proton shieldings: functional-group contributions from ab initio calculations. , 2001, Journal of the American Chemical Society.

[2]  A. Albuquerque,et al.  GIAO-HDFT scaling factor for 13C NMR chemical shifts calculation† , 2010 .

[3]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[4]  J. Gauss,et al.  Why benchmark-quality computations are needed to reproduce 1-adamantyl cation NMR chemical shifts accurately. , 2011, The journal of physical chemistry. A.

[5]  M. Szafran,et al.  DABCO mono-betaine hydrate studied by X-ray diffraction, DFT calculations and spectroscopic methods , 2009 .

[6]  A. Willis,et al.  Structure of the lycorinine alkaloid nobilisitine A. , 2011, The Journal of organic chemistry.

[7]  Jan H. Jensen,et al.  Definitive Benchmark Study of Ring Current Effects on Amide Proton Chemical Shifts. , 2011, Journal of chemical theory and computation.

[8]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[9]  P. Schleyer,et al.  The ab initio energy difference favoring the nonclassical over the classical structure of the bicyclo[2.1.1]hexyl cation. Comparison of calculated (IGLO) and experimental 13C chemical shifts , 1988 .

[10]  Jan M. L. Martin,et al.  Development of density functionals for thermochemical kinetics. , 2004, The Journal of chemical physics.

[11]  J. Autschbach,et al.  Relativistic Computation of NMR Shieldings and Spin‐Spin Coupling Constants , 2007 .

[12]  J. Goodman,et al.  Assigning the stereochemistry of pairs of diastereoisomers using GIAO NMR shift calculation. , 2009, The Journal of organic chemistry.

[13]  A. Allouche,et al.  DFT calculations of 1H chemical shifts, simulated and experimental NMR spectra for sarcosine , 2010 .

[14]  K C Nicolaou,et al.  Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. , 2005, Angewandte Chemie.

[15]  K C Nicolaou,et al.  Addressing the stereochemistry of complex organic molecules by density functional theory‐NMR , 2011, Journal of the American Chemical Society.

[16]  J. Husband,et al.  Tautomerism, normal coordinate analysis, vibrational assignments, calculated IR, Raman and NMR spectra of adenine , 2009 .

[17]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[18]  D. B. Chesnut On the calculation of hydrogen NMR chemical shielding , 1997 .

[19]  A. Bagno Complete prediction of the 1H NMR spectrum of organic molecules by DFT calculations of chemical shifts and spin-spin coupling constants. , 2001, Chemistry.

[20]  Alexander D. MacKerell,et al.  Computational Biochemistry and Biophysics , 2001 .

[21]  A. M. Belostotskii Calculated chemical shifts as a fine tool of conformational analysis: an unambiguous solution for haouamine alkaloids. , 2008, The Journal of organic chemistry.

[22]  L. Dwoskin,et al.  First-principles determination of molecular conformations of indolizidine (−)-235B′ in solution , 2009, Theoretical chemistry accounts.

[23]  K N Houk,et al.  Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules. , 2005, Journal of chemical theory and computation.

[24]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[25]  D. Tantillo,et al.  Prediction of the structure of nobilisitine a using computed NMR chemical shifts. , 2011, Journal of natural products.

[26]  David Feller The role of databases in support of computational chemistry calculations , 1996 .

[27]  S. Grimme,et al.  Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. , 2008, Accounts of chemical research.

[28]  D. Giesen,et al.  A hybrid quantum mechanical and empirical model for the prediction of isotropic 13C shielding constants of organic molecules , 2002 .

[29]  Y. Kishi,et al.  Attempts to assemble a universal NMR database without synthesis of NMR database compounds. , 2006, Organic letters.

[30]  Y. Ishikawa,et al.  Aplysqualenols A and B: Squalene-Derived Polyethers with Antitumoral and Antiviral Activity from the Caribbean Sea Slug Aplysia dactylomela. , 2009, European journal of organic chemistry.

[31]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[32]  Y. Tobe,et al.  Formation of naphthodithiophene isomers by flash vacuum pyrolysis of 1,6-di(2-thienyl)- and 1,6-di(3-thienyl)-1,5-hexadien-3-ynes , 2009 .

[33]  A. Yu,et al.  Ab initio calculations on pKa values of benzo-quinuclidine series in aqueous solvent , 2007 .

[34]  K. Kitaura,et al.  Fragment-Molecular-Orbital-Method-Based ab Initio NMR Chemical-Shift Calculations for Large Molecular Systems , 2010 .

[35]  P. Joseph-Nathan,et al.  DFT‐GIAO 1H and 13C NMR prediction of chemical shifts for the configurational assignment of 6β‐hydroxyhyoscyamine diastereoisomers , 2009, Magnetic resonance in chemistry : MRC.

[36]  P. Schleyer,et al.  The Classical 2‐Norbornyl Cation Rigorously Defined Ab Initio , 1993 .

[37]  I. Fishtik Comment on "The concept of protobranching and its many paradigm shifting implications for energy evaluations". , 2010, The journal of physical chemistry. A.

[38]  J. Meiler,et al.  Genius: a genetic algorithm for automated structure elucidation from 13C NMR spectra. , 2002, Journal of the American Chemical Society.

[39]  G. Seoane,et al.  Conformational analysis of trans-[ReO2(pn)2]+ in aqueous solution by NMR and DFT calculations , 2008 .

[40]  Julio C. Facelli,et al.  Density functional theory calculations of the structure and the 15N and 13C chemical shifts of methyl bacteriopheophorbide a and bacteriochlorophyll a , 1998 .

[41]  D. B. Chesnut The Ab Initio Computation of Nuclear Magnetic Resonance Chemical Shielding , 2007 .

[42]  M. Schindler Magnetic properties in terms of localized quantities. 5. Carbocations , 1987 .

[43]  Roberto Cammi,et al.  Continuum Solvation Models in Chemical Physics , 2007 .

[44]  Fabian López-Vallejo,et al.  Structural reassignment, absolute configuration, and conformation of hypurticin, a highly flexible polyacyloxy-6-heptenyl-5,6-dihydro-2H-pyran-2-one. , 2009, Journal of natural products.

[45]  L. Tušek-Boz̆ić,et al.  Spectroscopic and DFT study of 3-quinolyl-α-aminophosphonates , 2009 .

[46]  P. E. Abreu,et al.  Conformational studies of poly(9,9-dialkylfluorene)s in solution using NMR spectroscopy and density functional theory calculations. , 2009, The journal of physical chemistry. B.

[47]  Paul R. Rablen,et al.  Quantum-chemical simulation of 1H NMR spectra. 2. Comparison of DFT-based procedures for computing proton-proton coupling constants in organic molecules. , 2011, The Journal of organic chemistry.

[48]  Matthew D. Wodrich,et al.  The concept of protobranching and its many paradigm shifting implications for energy evaluations. , 2007, Chemistry.

[49]  David Forsyth,et al.  Computed 13C NMR Chemical Shifts via Empirically Scaled GIAO Shieldings and Molecular Mechanics Geometries. Conformation and Configuration from 13C Shifts , 1997 .

[50]  Alessandro Bagno,et al.  Toward the complete prediction of the 1H and 13C NMR spectra of complex organic molecules by DFT methods: application to natural substances. , 2006, Chemistry.

[51]  M. Malagoli,et al.  Computational approach to molecular magnetic properties by continuous transformation of the origin of the current density , 1994 .

[52]  Linda J Broadbelt,et al.  Regression formulas for density functional theory calculated 1H and 13C NMR chemical shifts in toluene-d8. , 2011, The journal of physical chemistry. A.

[53]  Giuseppe Bifulco,et al.  Structure validation of natural products by quantum-mechanical GIAO calculations of 13C NMR chemical shifts. , 2002, Chemistry.

[54]  M. Solà,et al.  Nuclear shieldings with the SSB-D functional. , 2011, The journal of physical chemistry. A.

[55]  J. Stanton,et al.  Computational study of [10]annulene NMR spectra. , 2002, Organic letters.

[56]  Alexander Alex,et al.  Accuracy vs time dilemma on the prediction of NMR chemical shifts: a case study (chloropyrimidines). , 2006, The Journal of organic chemistry.

[57]  J. Gauss,et al.  Electron-correlated approaches for the calculation of nmr chemical shifts , 2003 .

[58]  Abil E. Aliev,et al.  Scaling factors for carbon NMR chemical shifts obtained from DFT B3LYP calculations , 2009 .

[59]  Ian C. Stewart,et al.  Conformations of N-heterocyclic carbene ligands in ruthenium complexes relevant to olefin metathesis. , 2009, Journal of the American Chemical Society.

[60]  Shoshannah A. Pearlman,et al.  A Comparison Of Density Functional Methods For The Estimation Of Proton Chemical Shifts With Chemical Accuracy , 1999 .

[61]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[62]  C. Maerker,et al.  Exact structures of carbocations established by combined computational and experimental methods , 1995 .

[63]  Ying Zhang,et al.  Systematic studies on the computation of nuclear magnetic resonance shielding constants and chemical shifts: The density functional models , 2007, J. Comput. Chem..

[64]  T. Keith,et al.  A comparison of models for calculating nuclear magnetic resonance shielding tensors , 1996 .

[65]  Hongxing Lei,et al.  Improved sampling methods for molecular simulation. , 2007, Current opinion in structural biology.

[66]  Alessandro Bagno,et al.  Prediction of the 1H and 13C NMR spectra of alpha-D-glucose in water by DFT methods and MD simulations. , 2007, The Journal of organic chemistry.

[67]  Bing Wang,et al.  Accurate prediction of proton chemical shifts. I. Substituted aromatic hydrocarbons , 2001, J. Comput. Chem..

[68]  Benjamin A. Ellingson,et al.  Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database , 2010, J. Chem. Inf. Model..

[69]  K. Ruud,et al.  Ro‐Vibrational Corrections to NMR Parameters , 2004 .

[70]  Paolo Lazzeretti,et al.  Gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. II. Density functional and coupled cluster theory. , 2007, The Journal of chemical physics.

[71]  Guntram Rauhut,et al.  Comparison of NMR Shieldings Calculated from Hartree−Fock and Density Functional Wave Functions Using Gauge-Including Atomic Orbitals , 1996 .

[72]  David J. Tozer,et al.  Improved NMR chemical shifts in density functional theory , 2003 .

[73]  Patrick W. Fowler,et al.  Patterns of Ring Currents in Conjugated Molecules: A Few-Electron Model Based on Orbital Contributions , 2001 .

[74]  D. Truhlar,et al.  Improved description of nuclear magnetic resonance chemical shielding constants using the M06-L meta-generalized-gradient-approximation density functional. , 2008, The journal of physical chemistry. A.

[75]  J. Autschbach,et al.  Chapter 1 Relativistic Computations of NMR Parameters from First Principles: Theory and Applications , 2009 .

[76]  Yoshihisa Kobayashi,et al.  Universal NMR databases for contiguous polyols. , 2003, Journal of the American Chemical Society.

[77]  J. Autschbach Calculation of Heavy‐Nucleus Chemical Shifts. Relativistic All‐Electron Methods , 2004 .

[78]  C. Geourjon,et al.  Involvement of electrostatic interactions in the mechanism of peptide folding induced by sodium dodecyl sulfate binding. , 2000, Biochemistry.

[79]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[80]  B. Champagne,et al.  Theoretical investigation on 1H and 13C NMR chemical shifts of small alkanes and chloroalkanes. , 2006, The Journal of chemical physics.

[81]  Donald G Truhlar,et al.  Representative Benchmark Suites for Barrier Heights of Diverse Reaction Types and Assessment of Electronic Structure Methods for Thermochemical Kinetics. , 2007, Journal of chemical theory and computation.

[82]  S. Böhm,et al.  Computational study to assign structure, tautomerism, E/Z and s-cis/s-trans isomerism, π-delocalization, partial aromaticity, and the ring size of 1,3-thiazolidin-4-ones and 1,3-thiazin-4-ones formed from thiosemicarbazides , 2009 .

[83]  Jonathan M Goodman,et al.  Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. , 2010, Journal of the American Chemical Society.

[84]  J. Autschbach,et al.  Relativistic Computation of NMR Shieldings and Spin—Spin Coupling Constants , 2003 .

[85]  Trygve Helgaker,et al.  Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants , 1999 .

[86]  Jürgen Gauss,et al.  The prediction of molecular equilibrium structures by the standard electronic wave functions , 1997 .

[87]  M. Karabacak,et al.  Molecular structure and vibrational assignments of hippuric acid: a detailed density functional theoretical study. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[88]  H. Huber,et al.  Molecular dynamics and NMR parameter calculations , 2004 .

[89]  R. Ponec,et al.  Multicenter bonding in organic chemistry. Geometry-sensitive 3c-2e bonding in (C...H...C) fragments of organic cations. , 2004, The Journal of organic chemistry.

[90]  K. Morokuma,et al.  ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels−Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition , 1996 .

[91]  Jonathan L Chen,et al.  Ab initio/GIAO-CCSD(T) study of the trimethyl- and dimethylsilicenium ions: structures, (29)Si, (13)C, and (1)H NMR chemical shifts, and IR spectra. , 2010, The journal of physical chemistry. A.

[92]  Paolo Lazzeretti Assessment of aromaticity via molecular response properties , 2004 .

[93]  P. Baran,et al.  Structural studies on aryl‐substituted enaminoketones and their thio analogues. Part I. Analysis of high‐resolution 1H, 13C NMR and 13C CP MAS spectra combined with GIAO‐DFT calculations , 2009, Magnetic resonance in chemistry : MRC.

[94]  Julio C. Facelli,et al.  Calculations of chemical shieldings: Theory and applications , 2004 .

[95]  Paul von Ragué Schleyer,et al.  Application and evaluation of ab initio chemical shift calculations for boranes and carboranes. How reliable are "accurate" experimental structures? , 1992 .

[96]  P. Bouř,et al.  Computational Analysis of Solvent Effects in NMR Spectroscopy. , 2010, Journal of chemical theory and computation.

[97]  Nicholas C. Handy,et al.  The density functional calculation of nuclear shielding constants using London atomic orbitals , 1995 .

[98]  Walter Thiel,et al.  NMR chemical shifts in MNDO approximation: Parameters and results for H, C, N, and O , 1999 .

[99]  Nicolas Foloppe,et al.  Conformational sampling and energetics of drug-like molecules. , 2009, Current medicinal chemistry.

[100]  P. Fowler,et al.  Four- and two-electron rules for diatropic and paratropic ring currents in monocyclic pi systems. , 2001, Chemical communications.

[101]  J. Tomasi,et al.  Nuclear magnetic shieldings in solution: Gauge invariant atomic orbital calculation using the polarizable continuum model , 1999 .

[102]  David C. Easter,et al.  Computational studies of the cone and 1,2,3 alternate calix[6]arene bis‐crown‐4 isomers: structures, NMR shifts, atomic charges, and steric compression , 2009 .

[103]  C. Hunter,et al.  From structure to chemical shift and vice-versa , 2005 .

[104]  T. Kupka,et al.  Convergence of Nuclear Magnetic Shieldings in the Kohn-Sham Limit for Several Small Molecules. , 2010, Journal of chemical theory and computation.

[105]  J. Elguero,et al.  Computational NMR Spectroscopy , 2010 .

[106]  Ying Zhang,et al.  OPBE: A promising density functional for the calculation of nuclear shielding constants , 2006 .

[107]  C. Wentrup,et al.  13 C NMR calculations on azepines and diazepines , 1997 .

[108]  W. Mikenda,et al.  NMR spectra of nitrogen‐containing compounds. Correlations between experimental and GIAO calculated data , 1999 .

[109]  Frank Jensen,et al.  Basis Set Convergence of Nuclear Magnetic Shielding Constants Calculated by Density Functional Methods. , 2008, Journal of chemical theory and computation.

[110]  D. Tantillo,et al.  How many secondary carbocations are involved in the biosynthesis of avermitilol? , 2011, Organic Letters.

[111]  Rupal Jain,et al.  Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets. , 2009, The Journal of organic chemistry.

[112]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[113]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[114]  F. Ferrante,et al.  A DFT study of the Karplus-type dependence of vicinal (3)J(Sn-C-X-C), X=N,O,S, in organotin(iv) compounds: application to conformationally flexible systems. , 2010, Organic & biomolecular chemistry.

[115]  A. T. Dossey,et al.  Relative configuration of natural products using NMR chemical shifts. , 2009, Journal of natural products.

[116]  Shun Su,et al.  Total synthesis and structure assignment of (+)-hexacyclinol. , 2006, Angewandte Chemie.

[117]  K. Pihlaja,et al.  Modeling NMR parameters by DFT methods as an aid to the conformational analysis of cis-fused 7a(8a)-methyl octa(hexa)hydrocyclopenta[d][1,3]oxazines and [3,1]benzoxazines. , 2003, Journal of the American Chemical Society.

[118]  Andrew C. Simmonett,et al.  Popular theoretical methods predict benzene and arenes to be nonplanar. , 2006, Journal of the American Chemical Society.

[119]  Donald G Truhlar,et al.  Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. , 2006, Journal of chemical theory and computation.

[120]  H. Krawczyk Production of uremic toxin methylguanidine from creatinine via creatol on activated carbon. , 2009, Journal of pharmaceutical and biomedical analysis.

[121]  John F. Stanton,et al.  The accurate determination of molecular equilibrium structures , 2001 .

[122]  S. Weinreb Lepadiformine: a case study of the value of total synthesis in natural product structure elucidation. , 2003, Accounts of chemical research.

[123]  M. Yáñez,et al.  Atomic additivity of the correlation energy in molecules—an ab initio MP4 and G3 study , 2003 .

[124]  M. Köck,et al.  Structural assignment of tetrabromostyloguanidine: does the relative configuration of the palau'amines need revision? , 2007, Angewandte Chemie.

[125]  S. F. Boys Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[126]  Hans-Ullrich Siehl,et al.  The interplay between experiment and theory: computational NMR spectroscopy of carbocations , 2007 .

[127]  M. Bühl,et al.  Calculation of NMR and EPR parameters : theory and applications , 2004 .

[128]  Kurt V. Mikkelsen,et al.  Computational protocols for prediction of solute NMR relative chemical shifts. A case study of L‐tryptophan in aqueous solution , 2011, J. Comput. Chem..

[129]  A. D. de Dios,et al.  Ab initio calculations of NMR chemical shifts. , 2008, The Journal of chemical physics.

[130]  Peter Pulay,et al.  Assessment of density functional methods for nuclear magnetic resonance shielding calculations , 2003 .

[131]  Giuseppe Bifulco,et al.  Comparison of different theory models and basis sets in the calculation of 13C NMR chemical shifts of natural products , 2004, Magnetic resonance in chemistry : MRC.

[132]  A J Williams,et al.  Applying computer-assisted structure elucidation algorithms for the purpose of structure validation: revisiting the NMR assignments of hexacyclinol. , 2008, Journal of natural products.

[133]  John F. Stanton,et al.  Perturbative treatment of triple excitations in coupled‐cluster calculations of nuclear magnetic shielding constants , 1996 .

[134]  Russell J. Boyd,et al.  Validation of a computational scheme to study 15N and 13C nuclear shielding constants , 2005 .

[135]  H. A. Dabbagh,et al.  DFT, ab initio, NMR, and NBO analyses of Nα-substituted hydrazino acetamides: Experimental vs theoretical values , 2010 .

[136]  Roberto Improta,et al.  Quantum mechanical computations and spectroscopy: from small rigid molecules in the gas phase to large flexible molecules in solution. , 2008, Accounts of chemical research.

[137]  S. Grimme Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. , 2006, Angewandte Chemie.

[138]  Alessandro Bagno,et al.  Computational NMR spectroscopy: reversing the information flow , 2007 .

[139]  Todd A. Keith,et al.  Calculation of magnetic response properties using atoms in molecules , 1992 .

[140]  J. Elguero,et al.  GIAO Calculations of Chemical Shifts in Heterocyclic Compounds , 2003 .

[141]  Structures of cyclohexane-1,3-dione and 4-hydroxycyclohexane-1,3-dione in solutions – An NMR and GIAO-DFT computational study , 2010 .

[142]  G. Portella,et al.  Time averaging of NMR chemical shifts in the MLF peptide in the solid state. , 2010, Journal of the American Chemical Society.

[143]  C. Sherrill,et al.  The performance of density functional theory for equilibrium molecular properties of symmetry breaking molecules , 2001 .

[144]  Caterina Benzi,et al.  Reliable NMR chemical shifts for molecules in solution by methods rooted in density functional theory , 2004, Magnetic resonance in chemistry : MRC.

[145]  W. Robien,et al.  13C‐NMR spectra of santalol derivatives: a comparison of DFT‐based calculations and database‐oriented prediction techniques , 2009, Magnetic resonance in chemistry : MRC.

[146]  Thomas Schrader,et al.  Molecular tweezer and clip in aqueous solution: unexpected self-assembly, powerful host-guest complex formation, quantum chemical 1H NMR shift calculation. , 2006, Journal of the American Chemical Society.

[147]  Naofumi Naga,et al.  Structure and dynamics of poly(ethylene-co-1,5-hexadiene) as studied by solid state 13C NMR and quantum chemical calculations , 2009 .

[148]  L. Williams,et al.  The Brosimum allene: a structural revision. , 2008, Organic letters.

[149]  Ian Carmichael,et al.  On the Addition of •OH Radicals to the Ipso Positions of Alkyl-Substituted Aromatics: Production of 4-Hydroxy-4-methyl-2,5-cyclohexadien-1-one in the Radiolytic Oxidation of p-Cresol , 2002 .

[150]  Nicolas Foloppe,et al.  Drug-like Bioactive Structures and Conformational Coverage with the LigPrep/ConfGen Suite: Comparison to Programs MOE and Catalyst , 2010, J. Chem. Inf. Model..

[151]  Donald G Truhlar,et al.  Benchmark database of barrier heights for heavy atom transfer, nucleophilic substitution, association, and unimolecular reactions and its use to test theoretical methods. , 2005, The journal of physical chemistry. A.

[152]  R. B. Nazarski Physical image versus structure relation. Part 14—an attempt to rationalize some acidic region 13C NMR-pH titration shifts for tetraaza macrocycles throughout the conformational GIAO DFT computational results: a pendant-arm cyclam case† , 2009 .

[153]  Ariel M. Sarotti,et al.  A multi-standard approach for GIAO (13)C NMR calculations. , 2009, The Journal of organic chemistry.

[154]  Markus Christen,et al.  On searching in, sampling of, and dynamically moving through conformational space of biomolecular systems: A review , 2008, J. Comput. Chem..

[155]  Dennis R. Salahub,et al.  Spin-orbit correction to NMR shielding constants from density functional theory , 1996 .

[156]  Peter Wipf,et al.  Structure reassignment of the fungal metabolite TAEMC161 as the phytotoxin viridiol. , 2003, Journal of natural products.

[157]  J. Chen,et al.  Intramolecular π‐Stacking in Isostructural Conformational Probes Depends Strongly on Charge Separation, a Proton NMR Study , 2008 .

[158]  Martin Saunders,et al.  Conformations of cycloheptadecane. A comparison of methods for conformational searching , 1990 .

[159]  Clémence Corminboeuf,et al.  Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. , 2006, Organic letters.

[160]  A. Sebag,et al.  Conformation and configuration of tertiary amines via GIAO-derived (13)C NMR chemical shifts and a multiple independent variable regression analysis. , 2001, The Journal of organic chemistry.

[161]  P. Archirel,et al.  Accurate conformation analysis in solution: NMR and DFT/PCM study of the S-3-(1-naphthoyl)-4-isopropyl-2,2-dimethyloxazolidin-5-one in CDCl3 , 2008 .

[162]  Antony J Williams,et al.  Structural revisions of natural products by Computer-Assisted Structure Elucidation (CASE) systems. , 2010, Natural product reports.

[163]  Y. Kishi,et al.  Toward creation of a universal NMR database for the stereochemical assignment of acyclic compounds: the case of two contiguous propionate units. , 1999, Organic letters.

[164]  R. B. Nazarski,et al.  Three-component conformational equilibria of some flexible pyrrolidin-2-(thi)ones in solution by NMR data (δC, δH, and nJHH) and their DFT predictions: a confrontation of different approaches , 2011 .

[165]  W. Kutzelnigg,et al.  Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. II. Application to some simple molecules , 1982 .

[166]  P. Bates,et al.  Macroscopic pKa Calculations for Fluorescein and Its Derivatives. , 2006, Journal of chemical theory and computation.

[167]  K. Merz,et al.  Fast semiempirical calculations for nuclear magnetic resonance chemical shifts: a divide-and-conquer approach. , 2004, The Journal of chemical physics.

[168]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[169]  K. Raymond,et al.  1H NMR chemical shift calculations as a probe of supramolecular host-guest geometry. , 2011, Journal of the American Chemical Society.

[170]  Christopher J Cramer,et al.  Hybrid Density Functional Methods Empirically Optimized for the Computation of (13)C and (1)H Chemical Shifts in Chloroform Solution. , 2006, Journal of chemical theory and computation.

[171]  Donald G Truhlar,et al.  Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. , 2005, The journal of physical chemistry. A.

[172]  V. Barone,et al.  Ab initio computation of spectroscopic parameters as a tool for the structural elucidation of organic systems , 2007 .

[173]  K. Ruud,et al.  Structure and NMR spectra of some [2.2]paracyclophanes. The dilemma of [2.2]paracyclophane symmetry. , 2011, The journal of physical chemistry. A.

[174]  Todd A. Keith,et al.  Calculation of magnetic response properties using a continuous set of gauge transformations , 1993 .

[175]  Alessandro Bagno,et al.  Predicting 13C NMR Spectra by DFT Calculations , 2003 .

[176]  Alessandro Bagno,et al.  Can two molecules have the same NMR spectrum? Hexacyclinol revisited. , 2009, Organic letters.

[177]  Giuseppe Bifulco,et al.  Determination of relative configuration in organic compounds by NMR spectroscopy and computational methods. , 2007, Chemical reviews.

[178]  D. Truhlar,et al.  QM/MM: what have we learned, where are we, and where do we go from here? , 2007 .

[179]  Jing Yang,et al.  Structure revision of hassananes with use of quantum mechanical 13C NMR chemical shifts and UV-vis absorption spectra. , 2008, The journal of physical chemistry. A.

[180]  A. Rozhenko,et al.  Specificity of 13C NMR Shielding Calculations in Thiocarbonyl Compounds , 2009 .

[181]  D. Major,et al.  Facile structural elucidation of imidazoles and oxazoles based on NMR spectroscopy and quantum mechanical calculations , 2010 .

[182]  Peter Wipf,et al.  Density functional theory calculation of 13C NMR shifts of diazaphenanthrene alkaloids: reinvestigation of the structure of samoquasine A. , 2008, The Journal of organic chemistry.

[183]  Choon‐Hong Tan,et al.  Toward Creation of a Universal NMR Database for Stereochemical Assignment: The Case of 1,3,5-Trisubstituted Acyclic Systems , 2000 .

[184]  Werner Kutzelnigg,et al.  Theory of Magnetic Susceptibilities and NMR Chemical Shifts in Terms of Localized Quantities , 1982 .

[185]  J. Duus,et al.  Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. , 2000, Chemical reviews.

[186]  Ana G. Petrovic,et al.  From Relative to Absolute Configuration of Complex Natural Products: Interplay Between NMR, ECD, VCD, and ORD Assisted by ab initio Calculations , 2010 .

[187]  S. Rychnovsky Predicting NMR spectra by computational methods: structure revision of hexacyclinol. , 2006, Organic letters.

[188]  St. Thomas,et al.  13C NMR Chemical Shift Calculations for Some Substituted Pyridines: A Comparative Consideration , 1997, J. Chem. Inf. Comput. Sci..

[189]  J. Tomasi,et al.  Medium effects on the properties of chemical systems: An overview of recent formulations in the polarizable continuum model (PCM) , 1999 .

[190]  C. Foote,et al.  Characterization of 5-hydroxy-8-oxo-7,8-dihydroguanosine in the photosensitized oxidation of 8-oxo-7,8-dihydroguanosine and its rearrangement to spiroiminodihydantoin. , 2004, Journal of the American Chemical Society.

[191]  Remarks on GIAO‐DFT predictions of 13C chemical shifts , 2009, Magnetic resonance in chemistry : MRC.

[192]  Ying Zhang,et al.  Geometric dependence of the B3LYP-predicted magnetic shieldings and chemical shifts. , 2007, The journal of physical chemistry. A.

[193]  Conformational study of 3β,16β-dihydroxyfriedelane by NMR and ab initio calculations , 2009 .

[194]  GIAO/DFT evaluation of 13C NMR chemical shifts of selected acetals based on DFT optimized geometries , 2004, Magnetic resonance in chemistry : MRC.

[195]  Jacopo Tomasi,et al.  Theoretical chemistry in solution. Some results and perspectives of the continuum methods and in particular of the polarizable continuum model , 1991 .

[196]  G. Bifulco,et al.  Quantum Mechanical Calculation of NMR Parameters in the Stereostructural Determination of Natural Products , 2010 .

[197]  J. Gauss,et al.  Electron correlation effects on the calculated 13C NMR spectra of vinyl cations , 1997 .

[198]  K. Ruud,et al.  Solvent effects on zero-point vibrational corrections to optical rotations and nuclear magnetic resonance shielding constants , 2008 .

[199]  Frans A A Mulder,et al.  NMR chemical shift data and ab initio shielding calculations: emerging tools for protein structure determination. , 2010, Chemical Society reviews.

[200]  M. Gordon,et al.  Correlation balance in basis sets for electronic structure calculations , 1987 .

[201]  Hybrid Usage of Computational Tools in Drug Synthesis , 2007 .

[202]  C. Cramer,et al.  Evaluation of various DFT protocols for computing 1H and 13C chemical shifts to distinguish stereoisomers: diastereomeric 2‐, 3‐, and 4‐methylcyclohexanols as a test set , 2007 .

[203]  S. Fedorov,et al.  Aplydactone, a new sesquiterpenoid with an unprecedented carbon skeleton from the sea hare Aplysia dactylomela, and its cargill-like rearrangement. , 2001, Journal of the American Chemical Society.

[204]  Giuseppe Bifulco,et al.  Determination of the relative stereochemistry of flexible organic compounds by Ab initio methods: conformational analysis and Boltzmann-averaged GIAO 13C NMR chemical shifts. , 2002, Chemistry.

[205]  R. Hanson,et al.  Conformational studies on (17alpha,20Z)-21-(X-Phenyl)-19-norpregna-1, 3,5(10),20-tetraene-3,17beta-diols using 1D and 2D NMR spectroscopy and GIAO calculations of (13)C shieldings. , 2000, The Journal of organic chemistry.

[206]  Biank T. Gonçalves,et al.  Anisotropic and hydrogen bonding effects in phenylglyoxamides and mandelamides: theoretical and NMR conformational evaluation , 2008, Magnetic resonance in chemistry : MRC.

[207]  Aage E. Hansen,et al.  Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to 13C shielding tensors , 1985 .

[208]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[209]  Kim K. Baldridge,et al.  Correlation of Empirical δ(TMS) and Absolute NMR Chemical Shifts Predicted by ab Initio Computations , 1999 .

[210]  J. Goodman,et al.  The stereochemical assignment of acyclic polyols: a computational study of the NMR data of a library of stereopentad sequences from polyketide natural products , 2010 .

[211]  Jürgen Gauss,et al.  The accuracy of ab initio molecular geometries for systems containing second-row atoms. , 2005, The Journal of chemical physics.