The Strength of First and Second Order Phase Transitions from Partition Function Zeroes

[1]  Michael E. Fisher,et al.  Phase Transitions and Critical Phenomena , 2021, Statistical and Thermal Physics.

[2]  N. Alves,et al.  Partition function zeros and leading-order scaling correction of the 3D Ising model from multicanonical simulations , 2000, cond-mat/0004199.

[3]  W. Janke,et al.  Monte Carlo study of the scaling of universal correlation lengths in three-dimensional O ( n ) spin models , 2000, cond-mat/0003124.

[4]  R. Creswick,et al.  YANG-LEE ZEROS OF THE Q-STATE POTTS MODEL IN THE COMPLEX MAGNETIC FIELD PLANE , 1998, cond-mat/9807360.

[5]  W. Janke,et al.  Three-dimensional 3-state Potts model revisited with new techniques , 1996, hep-lat/9612008.

[6]  Lang,et al.  Non-Gaussian Fixed Point in Four-Dimensional Pure Compact U(1) Gauge Theory on the Lattice. , 1996, Physical review letters.

[7]  Lang,et al.  Universality of the Ising model on spherelike lattices. , 1996, Physical review. B, Condensed matter.

[8]  Barbour,et al.  Lee-Yang zeros and the chiral phase transition in compact lattice QED. , 1995, Physical review. D, Particles and fields.

[9]  Sarkar,et al.  Singularity of the density of states in the two-dimensional Hubbard model from finite-size scaling of Yang-Lee zeros. , 1995, Physical review. B, Condensed matter.

[10]  R. Kenna,et al.  Logarithmic corrections to scaling in the two-dimensional XY model , 1995, hep-lat/9501008.

[11]  C. Lang,et al.  Lee-Yang zeroes in the one flavour massive lattice Schwinger model , 1994, hep-lat/9408018.

[12]  M. Baig,et al.  Finite-Size analysis of the 4-d abelian surface gauge model , 1994, hep-lat/9405023.

[13]  Lang,et al.  Scaling and density of Lee-Yang zeros in the four-dimensional Ising model. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Janke,et al.  Accurate first-order transition points from finite-size data without power-law corrections. , 1993, Physical review. B, Condensed matter.

[15]  Barbour,et al.  Grand-canonical partition function of a two-dimensional Hubbard model. , 1992, Physical review. B, Condensed matter.

[16]  A. Bell,et al.  Complex zeros of the partition function for compact lattice QED , 1992 .

[17]  D. Duke,et al.  Spectral density analysis of the chiral transition in nf=4 finite temperature QCD , 1992 .

[18]  Janke,et al.  New method to determine first-order transition points from finite-size data. , 1992, Physical review letters.

[19]  R. Kenna,et al.  Finite size scaling and the zeroes of the partition function in the Ф44 model , 1991 .

[20]  G. Bhanot,et al.  φ4 on F4: Analytical results , 1990 .

[21]  William H. Press,et al.  Numerical recipes , 1990 .

[22]  Lee,et al.  New numerical method to study phase transitions. , 1990, Physical review letters.

[23]  Berg,et al.  Partition-function zeros and the SU(3) deconfining phase transition. , 1990, Physical review letters.

[24]  P. Butera,et al.  Complex temperature singularities for the two-dimensional Heisenberg O(∞) model☆ , 1989 .

[25]  C. Borgs,et al.  A unified approach to phase diagrams in field theory and statistical mechanics , 1989 .

[26]  Stephen R. Sharpe,et al.  Zeroing in on SU(3) , 1988 .

[27]  Privman,et al.  Complex-temperature-plane zeros: Scaling theory and multicritical mean-field models. , 1987, Physical review. B, Condensed matter.

[28]  Gyan Bhanot,et al.  A new method for the partition function of discrete systems with application to the 3D Ising model , 1987 .

[29]  Binder,et al.  Finite-size effects at temperature-driven first-order transitions. , 1986, Physical review. B, Condensed matter.

[30]  E. Marinari,et al.  Complex zeroes of the d = 3 Ising model: Finite-size scaling and critical amplitudes , 1984 .

[31]  C. Itzykson,et al.  Distribution of zeros in Ising and gauge models , 1983 .

[32]  P. Martin Ising lattice gauge theory in three dimensions , 1983 .

[33]  R. Pearson Partition function of the Ising model on the periodic 4×4×4 lattice , 1982 .

[34]  M. Suzuki,et al.  Statistical Thermodynamics of Finite Ising Model. II , 1970 .

[35]  M. Suzuki,et al.  Statistical Mechanics of the Finite Ising Model with Higher Spin , 1969 .

[36]  M. Suzuki,et al.  A Theory on the Critical Behaviour of Ferromagnets , 1967 .

[37]  R. Abe Logarithmic Singularity of Specific Heat near the Transition Point in the Ising Model , 1967 .

[38]  R. E. PEIERLS,et al.  Lectures on Theoretical Physics , 1951, Nature.

[39]  David P. Landau,et al.  Computer Simulation Studies in Condensed-Matter Physics X , 1998 .

[40]  Jürgen Potthoff,et al.  Stochastic analysis and applications in physics , 1994 .

[41]  H. Gausterer,et al.  Computational Methods in Field Theory , 1992 .

[42]  Berg,et al.  Ising-model Monte Carlo simulations: Density of states and mass gap. , 1990, Physical review. B, Condensed matter.

[43]  Vladimir Privman,et al.  Finite Size Scaling and Numerical Simulation of Statistical Systems , 1990 .

[44]  F. Y. Wu The Potts model , 1982 .

[45]  R. E. Mills,et al.  Critical phenomena. , 1971, Science.