Backward steps in rigid body simulation

Physically based simulation of rigid body dynamics is commonly done by time-stepping systems forward in time. In this paper, we propose methods to allow time-stepping rigid body systems back-ward in time. Unfortunately, reverse-time integration of rigid bodies involving frictional contact is mathematically ill-posed, and can lack unique solutions. We instead propose time-reversed rigid body integrators that can sample possible solutions when unique ones do not exist. We also discuss challenges related to dissipation-related energy gain, sensitivity to initial conditions, stacking, constraints and articulation, rolling, sliding, skidding, bouncing, high angular velocities, rapid velocity growth from micro-collisions, and other problems encountered when going against the usual flow of time.

[1]  Ronald Fedkiw,et al.  Nonconvex rigid bodies with stacking , 2003, ACM Trans. Graph..

[2]  Dinesh K. Pai,et al.  Fast frictional dynamics for rigid bodies , 2005, ACM Trans. Graph..

[3]  James K. Hahn,et al.  Realistic animation of rigid bodies , 1988, SIGGRAPH.

[4]  Rahil Baber,et al.  Rigid body simulation , 2006 .

[5]  O. Penrose The Direction of Time , 1962 .

[6]  Greg Turk,et al.  Keyframe control of complex particle systems using the adjoint method , 2006, SCA '06.

[7]  Doug L. James,et al.  Many-worlds browsing for control of multibody dynamics , 2007, SIGGRAPH 2007.

[8]  Ioannis G. Kevrekidis,et al.  Computing in the past with forward integration , 2004 .

[9]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[10]  Steven M. Seitz,et al.  Interactive manipulation of rigid body simulations , 2000, SIGGRAPH.

[11]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[12]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[13]  David A. Forsyth,et al.  Sampling plausible solutions to multi-body constraint problems , 2000, SIGGRAPH.

[14]  Hamid M. Lankarani,et al.  Continuous contact force models for impact analysis in multibody systems , 1994, Nonlinear Dynamics.

[15]  Brian Mirtich,et al.  Timewarp rigid body simulation , 2000, SIGGRAPH.

[16]  M. Anitescu,et al.  Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems , 1997 .

[17]  Steven M. Seitz,et al.  Motion sketching for control of rigid-body simulations , 2003, TOGS.

[18]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[19]  Adrien Treuille,et al.  Fluid control using the adjoint method , 2004, ACM Trans. Graph..

[20]  D. Stewart,et al.  Dynamics, Friction, And Complementarity Problems , 1995 .

[21]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[22]  Jerrold E. Marsden,et al.  Geometric, variational integrators for computer animation , 2006, SCA '06.

[23]  Ronald Fedkiw,et al.  Dynamic simulation of articulated rigid bodies with contact and collision , 2006, IEEE Transactions on Visualization and Computer Graphics.

[24]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[25]  K. H. Hunt,et al.  Coefficient of Restitution Interpreted as Damping in Vibroimpact , 1975 .

[26]  John F. Canny,et al.  Impulse-based simulation of rigid bodies , 1995, I3D '95.

[27]  Ernst Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[28]  D. Stewart Convergence of a Time‐Stepping Scheme for Rigid‐Body Dynamics and Resolution of Painlevé's Problem , 1998 .

[29]  David Baraff,et al.  Coping with friction for non-penetrating rigid body simulation , 1991, SIGGRAPH.