Reflected Brownian Motion in a Convex Polyhedral Cone: Tail Estimates for the Stationary Distribution

Consider a multidimensional obliquely reflected Brownian motion in the positive orthant, or, more generally, in a convex polyhedral cone. We find sufficient conditions for existence of a stationary distribution and convergence to this distribution at an exponential rate, as time goes to infinity, complementing the results of Dupuis and Williams (Ann Probab 22(2):680–702, 1994) and Atar et al. (Ann Probab 29(2):979–1000, 2001). We also prove that certain exponential moments for this distribution are finite, thus providing a tail estimate for this distribution. Finally, we apply these results to systems of rank-based competing Brownian particles, introduced in Banner et al. (Ann Appl Probab 15(4):2296–2330, 2005).

[1]  J. Harrison,et al.  On the distribution of m ultidimen-sional reflected Brownian motion , 1981 .

[2]  J. Harrison,et al.  Reflected Brownian Motion on an Orthant , 1981 .

[3]  Gerard J. Foschini Equilibria for diffusion models of pairs of communicating computers - Symmetric case , 1982, IEEE Trans. Inf. Theory.

[4]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[5]  R. Bass,et al.  Uniqueness for diffusions with piecewise constant coefficients , 1987 .

[6]  Ruth J. Williams,et al.  Multidimensional Reflected Brownian Motions Having Exponential Stationary Distributions , 1987 .

[7]  Ruth J. Williams Reflected Brownian motion with skew symmetric data in a polyhedral domain , 1987 .

[8]  Ruth J. Williams,et al.  Brownian Models of Open Queueing Networks with Homogeneous Customer Populations , 1987 .

[9]  Ruth J. Williams,et al.  A boundary property of semimartingale reflecting Brownian motions , 1988 .

[10]  S. Meyn Ergodic theorems for discrete time stochastic systems using a stochastic lyapunov function , 1989 .

[11]  P. Dupuis,et al.  On Lipschitz continuity of the solution mapping to the Skorokhod problem , 1991 .

[12]  J. Dai Steady-state analysis of reflected Brownian motions: characterization, numerical methods and queueing applications , 1991 .

[13]  S. Meyn,et al.  Stability of Markovian processes I: criteria for discrete-time Chains , 1992, Advances in Applied Probability.

[14]  L. Rogers,et al.  Recurrence and transience of reflecting Brownian motion in the quadrant , 1993, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  S. Meyn,et al.  Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.

[16]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[17]  R. J. Williams,et al.  Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant , 1993 .

[18]  S. Meyn,et al.  Stability of Markovian processes II: continuous-time processes and sampled chains , 1993, Advances in Applied Probability.

[19]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[20]  Ruth J. Williams,et al.  Lyapunov Functions for Semimartingale Reflecting Brownian Motions , 1994 .

[21]  S. Meyn,et al.  Exponential and Uniform Ergodicity of Markov Processes , 1995 .

[22]  Ruth J. Williams Semimartingale reflecting Brownian motions in the orthant , 1995 .

[23]  S. Meyn,et al.  Computable exponential convergence rates for stochastically ordered Markov processes , 1996 .

[24]  H. Chen A sufficient condition for the positive recurrence of a semimartingale reflecting Brownian motion in an orthant , 1996 .

[25]  Ruth J. Williams,et al.  Existence and Uniqueness of Semimartingale Reflecting Brownian Motions in Convex Polyhedrons , 1996 .

[26]  Amarjit Budhiraja,et al.  Simple Necessary and Sufficient Conditions for the Stability of Constrained Processes , 1999, SIAM J. Appl. Math..

[27]  P. Dupuis,et al.  ON POSITIVE RECURRENCE OF CONSTRAINED DIFFUSION PROCESSES , 2001, math/0501018.

[28]  R. Atar,et al.  Correction Note: On Positive Recurrence of Constrained Diffusion Processes , 2001 .

[29]  R. Douc,et al.  Practical drift conditions for subgeometric rates of convergence , 2004, math/0407122.

[30]  Adrian D. Banner,et al.  Atlas models of equity markets , 2005, math/0602521.

[31]  G. Roberts,et al.  SUBGEOMETRIC ERGODICITY OF STRONG MARKOV PROCESSES , 2005, math/0505260.

[32]  R. Douc,et al.  Subgeometric rates of convergence of f-ergodic strong Markov processes , 2006, math/0605791.

[33]  A. Budhiraja,et al.  Long time asymptotics for constrained diffusions in polyhedral domains , 2007 .

[34]  D. Bakry,et al.  Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré , 2007, math/0703355.

[35]  J. Pitman,et al.  ONE-DIMENSIONAL BROWNIAN PARTICLE SYSTEMS WITH RANK DEPENDENT DRIFTS , 2007, 0704.0957.

[36]  S. Chatterjee,et al.  A phase transition behavior for Brownian motions interacting through their ranks , 2007, 0706.3558.

[37]  C. Kardaras Balance, growth and diversity of financial markets , 2008, 0803.1858.

[38]  B. Jourdain,et al.  Propagation of chaos and Poincaré inequalities for a system of particles interacting through their cdf , 2007, math/0701879.

[39]  Local times of ranked continuous semimartingales , 2008 .

[40]  P. Dupuis,et al.  SDEs with Oblique Reflection on Nonsmooth Domains , 2008 .

[41]  J. Michael Harrison,et al.  Reflected Brownian motion in the quadrant: tail behavior of the stationary distribution , 2009, Queueing Syst. Theory Appl..

[42]  grant number Sfi,et al.  Reflected Brownian motion in a wedge: sum-of-exponential stationary densities , 2009 .

[43]  Mykhaylo Shkolnikov Large systems of diffusions interacting through their ranks , 2010, 1008.4611.

[44]  J. Harrison,et al.  Positive recurrence of reflecting Brownian motion in three dimensions , 2010, 1009.5746.

[45]  Jonathan C. Mattingly,et al.  Yet Another Look at Harris’ Ergodic Theorem for Markov Chains , 2008, 0810.2777.

[46]  I. Karatzas,et al.  Strong solutions of stochastic equations with rank-based coefficients , 2011, 1109.3823.

[47]  Soumik Pal,et al.  Convergence rates for rank-based models with applications to portfolio theory , 2011, 1108.0384.

[48]  Adrian D. Banner,et al.  HYBRID ATLAS MODELS , 2009, 0909.0065.

[49]  I. Karatzas,et al.  Systems of Brownian particles with asymmetric collisions , 2012, 1210.0259.

[50]  J. Michael Harrison,et al.  Reflecting Brownian motion in three dimensions: a new proof of sufficient conditions for positive recurrence , 2012, Math. Methods Oper. Res..

[51]  A. Dembo,et al.  Large Deviations for Diffusions Interacting Through Their Ranks , 2012, 1211.5223.

[52]  Masakiyo Miyazawa,et al.  Stationary distribution of a two-dimensional SRBM: geometric views and boundary measures , 2011, Queueing Syst. Theory Appl..

[53]  A. Sarantsev,et al.  Multiple Collisions in Systems of Competing Brownian Particles , 2013, 1309.2621.

[54]  B. Jourdain,et al.  Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation , 2012, 1211.4818.

[55]  B. Jourdain,et al.  Capital distribution and portfolio performance in the mean-field Atlas model , 2013, 1312.5660.

[56]  I. Karatzas,et al.  Diverse market models of competing Brownian particles with splits and mergers , 2014, 1404.0748.

[57]  A. Sarantsev Infinite Systems of Competing Brownian Particles , 2014, 1403.4229.

[58]  A. Sarantsev Triple and simultaneous collisions of competing Brownian particles , 2014, 1401.6255.

[59]  J. Reygner Chaoticity of the stationary distribution of rank-based interacting diffusions , 2014, 1408.4103.

[60]  A. Sarantsev Lyapunov Functions for Reflected Jump-Diffusions , 2015 .

[61]  A. Sarantsev Lyapunov Functions and Exponential Ergodicity for Reflected Brownian Motion in the Orthant and Competing Brownian Particles , 2013 .