Power management in a hydro-thermal system under uncertainty by Lagrangian relaxation

We present a dynamic multistage stochastic programming model for the cost-optimal generation of electric power in a hydro-thermal system under uncertainty in load, inflow to reservoirs and prices for fuel and delivery contracts. The stochastic load process is approximated by a scenario tree obtained by adapting a SARIMA model to historical data, using empirical means and variances of simulated scenarios to construct an initial tree, and reducing it by a scenario deletion procedure based on a suitable probability distance. Our model involves many mixed-integer variables and individual power unit constraints, but relatively few coupling constraints. Hence we employ stochastic Lagrangian relaxation that assigns stochastic multipliers to the coupling constraints. Solving the Lagrangian dual by a proximal bundle method leads to successive decomposition into single thermal and hydro unit subproblems that are solved by dynamic programming and a specialized descent algorithm, respectively. The optimal stochastic multipliers are used in Lagrangian heuristics to construct approximately optimal first stage decisions. Numerical results are presented for realistic data from a German power utility, with a time horizon of one week and scenario numbers ranging from 5 to 100. The corresponding optimization problems have up to 200,000 binary and 350,000 continuous variables, and more than 500,000 constraints.

[1]  Dick Duffey,et al.  Power Generation , 1932, Transactions of the American Institute of Electrical Engineers.

[2]  R. Rockafellar,et al.  The Optimal Recourse Problem in Discrete Time: $L^1 $-Multipliers for Inequality Constraints , 1978 .

[3]  D. Bertsekas,et al.  Optimal short-term scheduling of large-scale power systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[4]  A. C. Miller,et al.  Discrete Approximations of Probability Distributions , 1983 .

[5]  Allen J. Wood,et al.  Power Generation, Operation, and Control , 1984 .

[6]  F. Lootsma,et al.  Scheduling of power generation via large-scale nonlinear optimization , 1987 .

[7]  Francisco D. Galiana,et al.  Towards a more rigorous and practical unit commitment by Lagrangian relaxation , 1988 .

[8]  R. Wets,et al.  Stochastic programming , 1989 .

[9]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[10]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[11]  Krzysztof C. Kiwiel,et al.  Exact penalty functions in proximal bundle methods for constrained convex nondifferentiable minimization , 1991, Math. Program..

[12]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[13]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[14]  Gerd Infanger,et al.  Monte Carlo (importance) sampling within a benders decomposition algorithm for stochastic linear programs , 1991, Ann. Oper. Res..

[15]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[16]  Peter B. Luh,et al.  Scheduling of hydrothermal power systems , 1993 .

[17]  S. Zenios,et al.  Constructing Optimal Samples from a Binomial Lattice , 1993 .

[18]  K. Kiwiel A Cholesky dual method for proximal piecewise linear programming , 1994 .

[19]  Gerald B. Sheblé,et al.  Unit commitment literature synopsis , 1994 .

[20]  Jery R. Stedinger,et al.  SOCRATES: A system for scheduling hydroelectric generation under uncertainty , 1995, Ann. Oper. Res..

[21]  Christian Michelot,et al.  Recent Developments in Optimization , 1995 .

[22]  Pierre Carpentier,et al.  Stochastic Optimal Control and Decomposition-Coordination Methods Part II: Application , 1995 .

[23]  Werner Römisch,et al.  Stability in multistage stochastic programming , 1995, Ann. Oper. Res..

[24]  Werner Römisch,et al.  A simple recourse model for power dispatch under uncertain demand , 1995, Ann. Oper. Res..

[25]  John R. Birge,et al.  A stochastic model for the unit commitment problem , 1996 .

[26]  Julia L. Higle,et al.  Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming , 1996 .

[27]  P. Carpentier,et al.  Stochastic optimization of unit commitment: a new decomposition framework , 1996 .

[28]  Matthias Peter Nowak,et al.  A Fast Descent Method for the Hydro Storage Subproblem in Power Generation , 1996 .

[29]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[30]  Karl Frauendorfer,et al.  Barycentric scenario trees in convex multistage stochastic programming , 1996, Math. Program..

[31]  Werner Römisch,et al.  Decomposition of a multi-stage stochastic program for power dispatch , 1996 .

[32]  Jitka Dupacová,et al.  Scenario-based stochastic programs: Resistance with respect to sample , 1996, Ann. Oper. Res..

[33]  David L. Woodruff,et al.  Progressive hedging and tabu search applied to mixed integer (0,1) multistage stochastic programming , 1996, J. Heuristics.

[34]  John R. Birge,et al.  Stochastic Programming Computation and Applications , 1997, INFORMS J. Comput..

[35]  Andrzej Ruszczynski,et al.  Decomposition methods in stochastic programming , 1997, Math. Program..

[36]  W. Ziemba,et al.  Portfolio Management in a Deregulated Hydropower Based Electricity Market , 1997 .

[37]  G. Schwarzbach,et al.  Optimale Blockauswahl bei der Kraftwerkseinsatzplanung der VEAG , 1997 .

[38]  Werner Römisch,et al.  Optimal Power Generation under Uncertainty via Stochastic Programming , 1998 .

[39]  G Ch,et al.  Optimal Scenario Tree Generation for Multiperiod Nancial Optimization , 1998 .

[40]  Giorgio Consigli,et al.  Dynamic stochastic programmingfor asset-liability management , 1998, Ann. Oper. Res..

[41]  Werner Römisch,et al.  Qantitative stability for scenario-based stochastic programs , 1998 .

[42]  Michael A. H. Dempster,et al.  Dynamic Stochastic Programming for Asset-Liability Management , 1998 .

[43]  Georg Ch. Pflug,et al.  A branch and bound method for stochastic global optimization , 1998, Math. Program..

[44]  Peter Kall,et al.  Stochastic Programming Methods and Technical Applications , 1998 .

[45]  Julia L. Higle,et al.  Statistical approximations forstochastic linear programming problems , 1999, Ann. Oper. Res..

[46]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[47]  Jitka Dupacová,et al.  Portfolio optimization via stochastic programming: Methods of output analysis , 1999, Math. Methods Oper. Res..

[48]  N. C. P. Edirisinghe,et al.  Bound‐based approximations in multistage stochasticprogramming: Nonanticipativity aggregation , 1999, Ann. Oper. Res..

[49]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[50]  Werner Römisch,et al.  Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty , 2000, Ann. Oper. Res..

[51]  M. P. Nowak Stochastic lagrangian relaxation in power scheduling of a hydro-thermal system under uncertainty , 2000 .

[52]  Stefan Feltenmark,et al.  Dual Applications of Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex Problems , 1999, SIAM J. Optim..

[53]  Jitka Dupacová,et al.  Scenarios for Multistage Stochastic Programs , 2000, Ann. Oper. Res..

[54]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[55]  Samer Takriti,et al.  Incorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment Problem , 2000, Oper. Res..

[56]  Nicole Gröwe-Kuska,et al.  Modeling of Uncertainty for the Real-Time Management of Power Systems , 2001 .

[57]  Claude Lemaréchal,et al.  Bundle Methods in Stochastic Optimal Power Management: A Disaggregated Approach Using Preconditioners , 2001, Comput. Optim. Appl..

[58]  Stein W. Wallace,et al.  Generating Scenario Trees for Multistage Decision Problems , 2001, Manag. Sci..

[59]  Claude Lemaréchal,et al.  A geometric study of duality gaps, with applications , 2001, Math. Program..

[60]  Georg Ch. Pflug,et al.  Scenario tree generation for multiperiod financial optimization by optimal discretization , 2001, Math. Program..

[61]  Svetlozar T. Rachev,et al.  Quantitative Stability in Stochastic Programming: The Method of Probability Metrics , 2002, Math. Oper. Res..