DeepCMB: Lensing Reconstruction of the Cosmic Microwave Background with Deep Neural Networks

Abstract Next-generation cosmic microwave background (CMB) experiments will have lower noise and therefore increased sensitivity, enabling improved constraints on fundamental physics parameters such as the sum of neutrino masses and the tensor-to-scalar ratio r . Achieving competitive constraints on these parameters requires high signal-to-noise extraction of the projected gravitational potential from the CMB maps. Standard methods for reconstructing the lensing potential employ the quadratic estimator (QE). However, the QE is known to perform suboptimally at the low noise levels expected in upcoming experiments. Other methods, like maximum likelihood estimators (MLE), are under active development. In this work, we demonstrate reconstruction of the CMB lensing potential with deep convolutional neural networks (CNN) — i.e., a ResUNet. The network is trained and tested on simulated data, and otherwise has no physical parametrization related to the physical processes of the CMB and gravitational lensing. We show that, over a wide range of angular scales, ResUNets recover the input gravitational potential with a higher signal-to-noise ratio than the QE method, reaching levels comparable to analytic approximations of MLE methods. We demonstrate that the network outputs quantifiably different lensing maps when given input CMB maps generated with different cosmologies. We also show we can use the reconstructed lensing map for cosmological parameter estimation. This application of CNNs provides a few innovations at the intersection of cosmology and machine learning. First, while training and regressing on images, this application predicts a continuous-variable field rather than discrete classes. Second, we are able to establish uncertainty measures for the network output that are analogous to standard methods. Beyond this first demonstration, we expect this approach to excel in capturing hard-to-model non-Gaussian astrophysical foreground and noise contributions.

[1]  Adrian T. Lee,et al.  A GUIDE TO DESIGNING FUTURE GROUND-BASED COSMIC MICROWAVE BACKGROUND EXPERIMENTS , 2014 .

[2]  P. A. R. Ade,et al.  MEASUREMENTS OF SUB-DEGREE B-MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2015, 1503.02315.

[3]  J. E. Ruhl,et al.  A 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Data , 2017, 1705.00743.

[4]  Albert Stebbins,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1997 .

[5]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[6]  Asantha Cooray,et al.  Lensing reconstruction with CMB temperature and polarization , 2003 .

[7]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Wayne Hu,et al.  Mass Reconstruction with CMB Polarization , 2001 .

[9]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[10]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[11]  Uros Seljak,et al.  Reconstruction of lensing from the cosmic microwave background polarization , 2003 .

[12]  A. Gilbert,et al.  A Measurement of the Cosmic Microwave Background B-mode Polarization Power Spectrum at Subdegree Scales from Two Years of polarbear Data , 2017, 1705.02907.

[13]  Barnabás Póczos,et al.  Estimating Cosmological Parameters from the Dark Matter Distribution , 2016, ICML.

[14]  David J. Schwab,et al.  A high-bias, low-variance introduction to Machine Learning for physicists , 2018, Physics reports.

[15]  V. V. Hristov,et al.  Cosmological parameters from the first results of Boomerang , 2001 .

[16]  Benjamin D. Wandelt,et al.  Bayesian delensing of CMB temperature and polarization , 2017, Physical Review D.

[17]  Nathanael Perraudin,et al.  DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications , 2018, Astron. Comput..

[18]  Wayne Hu,et al.  Weak lensing of the CMB: A harmonic approach , 2000, astro-ph/0001303.

[19]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .

[20]  S. Oguri,et al.  Mission Design of LiteBIRD , 2013, 1311.2847.

[21]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters , 2016, Journal of Cosmology and Astroparticle Physics.

[22]  C. Bennett,et al.  Measurement of the Cosmic Microwave Background spectrum by the COBE FIRAS instrument , 1994 .

[23]  J. E. Ruhl,et al.  CMB Polarization B-mode Delensing with SPTpol and Herschel , 2017, 1701.04396.

[24]  J. E. Ruhl,et al.  Constraints on Cosmological Parameters from the Angular Power Spectrum of a Combined 2500 deg2 SPT-SZ and Planck Gravitational Lensing Map , 2017, The Astrophysical Journal.

[25]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[26]  Jean-Luc Starck,et al.  Weak Gravitational Lensing , 2012 .

[27]  Patrick van der Smagt,et al.  CNN-based Segmentation of Medical Imaging Data , 2017, ArXiv.

[28]  C. A. Oxborrow,et al.  Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.

[29]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[30]  Yoshua Bengio,et al.  On the Properties of Neural Machine Translation: Encoder–Decoder Approaches , 2014, SSST@EMNLP.

[31]  Max Welling,et al.  Spherical CNNs , 2018, ICLR.

[32]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[33]  P. A. R. Ade,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND GRAVITATIONAL LENSING POTENTIAL FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2014, 1412.4760.

[34]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[35]  M. Tomasi,et al.  Convolutional neural networks on the HEALPix sphere: a pixel-based algorithm and its application to CMB data analysis , 2019, Astronomy & Astrophysics.

[36]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[37]  David N. Spergel,et al.  Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum , 2017 .

[38]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[39]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[40]  Sepp Hochreiter,et al.  Self-Normalizing Neural Networks , 2017, NIPS.

[41]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[42]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[43]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[44]  Oliver Zahn,et al.  Delensing CMB polarization with external datasets , 2010, 1010.0048.

[45]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[46]  D Zipser,et al.  Learning the hidden structure of speech. , 1988, The Journal of the Acoustical Society of America.

[47]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[48]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[49]  Andrew Gordon Wilson,et al.  Averaging Weights Leads to Wider Optima and Better Generalization , 2018, UAI.

[50]  Francesco Visin,et al.  A guide to convolution arithmetic for deep learning , 2016, ArXiv.

[51]  Adrian T. Lee,et al.  Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data , 2017, 1707.09353.

[52]  A. G. Vieregg,et al.  Bicep2/KECK ARRAY VIII: MEASUREMENT OF GRAVITATIONAL LENSING FROM LARGE-SCALE B-MODE POLARIZATION , 2016, 1606.01968.

[53]  Qingjie Liu,et al.  Road Extraction by Deep Residual U-Net , 2017, IEEE Geoscience and Remote Sensing Letters.

[54]  Patrick Gallinari,et al.  Deep learning for physical processes: incorporating prior scientific knowledge , 2017, ICLR.

[55]  Zhen Lin,et al.  Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network , 2018, NeurIPS.

[56]  M Hazumi,et al.  Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment. , 2013, Physical review letters.

[57]  R. Wilson Modern Cosmology , 2004 .

[58]  R. W. Ogburn,et al.  Constraints on Primordial Gravitational Waves Using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season. , 2018, Physical review letters.

[59]  Seunghoon Hong,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[60]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[61]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.