Automatic particle detection in microscopy using temporal correlations

One of the fundamental problems in the analysis of single particle tracking data is the detection of individual particle positions from microscopy images. Distinguishing true particles from noise with a minimum of false positives and false negatives is an important step that will have substantial impact on all further analysis of the data. A common approach is to obtain a plausible set of particles from a larger set of candidate particles by filtering using manually selected threshold values for intensity, size, shape, and other parameters describing a particle. This introduces subjectivity into the analysis and hinders reproducibility. In this paper, we introduce a method for automatic selection of these threshold values based on maximizing temporal correlations in particle count time series. We use Markov Chain Monte Carlo to find the threshold values corresponding to the maximum correlation, and we study several experimental data sets to assess the performance of the method in practice by comparing manually selected threshold values from several independent experts with automatically selected threshold values. We conclude that the method produces useful results, reducing subjectivity and the need for manual intervention, a great benefit being its easy integratability into many already existing particle detection algorithms. Microsc. Res. Tech., 76:997–1006, 2013. © 2013 Wiley Periodicals, Inc.

[1]  Vannary Meas-Yedid,et al.  Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing , 2002, IEEE Transactions on Medical Imaging.

[2]  Alberto Diaspro,et al.  Nanoscopy and Multidimensional Optical Fluorescence Microscopy , 2010 .

[3]  N. H. Bingham,et al.  Estimating Diffusion Coefficients From Count Data: Einstein-Smoluchowski Theory Revisited , 1997 .

[4]  C. Vervaet,et al.  Sizing nanomatter in biological fluids by fluorescence single particle tracking. , 2010, Nano letters.

[5]  K. Braeckmans,et al.  Single particle tracking , 2010 .

[6]  M. Ameloot,et al.  Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor α3 isoforms in the cell plasma membrane. , 2012, Biochimica et biophysica acta.

[7]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[8]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[9]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[10]  Pekka Ruusuvuori,et al.  Open Access Research Article Evaluation of Methods for Detection of Fluorescence Labeled Subcellular Objects in Microscope Images , 2022 .

[11]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[12]  James P. Egan,et al.  Signal detection theory and ROC analysis , 1975 .

[13]  D. McDonald,et al.  Visualization of the intracellular behavior of HIV in living cells , 2002, The Journal of cell biology.

[14]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[15]  K. Neyts,et al.  The influence of movement on the localization precision of sub‐resolution particles in fluorescence microscopy , 2012, Journal of biophotonics.

[16]  Wiro J. Niessen,et al.  Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy , 2010, IEEE Transactions on Medical Imaging.

[17]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[18]  M. Rudemo,et al.  Measuring absolute number concentrations of nanoparticles using single-particle tracking. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[20]  J. Hofkens,et al.  Monitoring the interaction of a single G-protein key binding site with rhodopsin disk membranes upon light activation. , 2009, Biochemistry.

[21]  Cremer,et al.  High‐precision distance measurements and volume‐conserving segmentation of objects near and below the resolution limit in three‐dimensional confocal fluorescence microscopy , 1998 .

[22]  M. Rudemo,et al.  Measuring absolute nanoparticle number concentrations from particle count time series , 2013, Journal of microscopy.

[23]  M. Unser,et al.  The colored revolution of bioimaging , 2006, IEEE Signal Processing Magazine.

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[25]  M. Smoluchowski,et al.  Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen , 1927 .

[26]  Jeffrey D. Scargle,et al.  An Introduction to the Theory of Point Processes, Vol. I: Elementary Theory and Methods , 2004, Technometrics.

[27]  Jérôme Boulanger,et al.  A Patch-Based Method for Repetitive and Transient Event Detection in Fluorescence Imaging , 2010, PloS one.

[28]  P. Sorger,et al.  Automatic fluorescent tag detection in 3D with super‐resolution: application to the analysis of chromosome movement , 2002, Journal of microscopy.

[29]  E. Gratton,et al.  Three‐Dimensional Particle Tracking in a Laser Scanning Fluorescence Microscope , 2009 .