Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert-dust cases

A numerical model, based on a Monte Carlo approach, is presented to determine functional relationships linking backscatter and other important properties as extinction, surface area, and volume of tropospheric aerosols. If existing, such relationships allow for a direct estimate of such properties by means of a single-wavelength lidar measurement. To be employed in a lidar inversion procedure, the extinction to backscatter ratio is also analyzed. Maritime and desert dust aerosol particles are addressed. In the latter case, both spherical and nonspherical shape of particles are considered. Large differences (up to 200%) result from the comparison of extinction computed for spherical and nonspherical particles. On the whole, maximum errors to be associated to the model estimation of the aerosol extinction coefficient and surface area are of the order of 50%. Conversely, errors associated to volume estimates range from 15% to 100%. To validate the model, a first comparison is performed between lidar and Sun-photometer-derived aerosol optical thickness of both maritime aerosols and Saharan dust.

[1]  Hajime Nakamura,et al.  Lidar Observation and Numerical Simulation of a Kosa (Asian Dust) over Tsukuba, Japan during the Spr , 1988 .

[2]  Gottfried Hänel,et al.  The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air , 1976 .

[3]  G. d’Almeida,et al.  On the variability of desert aerosol radiative characteristics , 1987 .

[4]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[5]  E. M. Patterson,et al.  Global measurements of aerosols in remote continental and marine regions: Concentrations, size distributions, and optical properties , 1980 .

[6]  A. H. Woodcock,et al.  The vertical distribution of the concentration of sea salt in the marine atmosphere near Hawaii , 1984 .

[7]  S. Kreidenweis,et al.  Aerosol distributions in the North Atlantic marine boundary layer during Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange , 1996 .

[8]  P. Warneck Chemistry of the natural atmosphere , 1999 .

[9]  E. M. Patterson,et al.  Complex Index of Refraction Between 300 and 700 nm for Saharan Aerosols , 1977 .

[10]  D. Blanchard,et al.  On the Production of Aitken Nuclei from Breaking Waves and Their Role in the Atmosphere , 1983 .

[11]  Ruprecht Jaenicke,et al.  Chapter 1 Tropospheric Aerosols , 1993 .

[12]  E. Saltzman,et al.  Sulfur dioxide and dimethyl sulphide in marine air at Cape Grim, Tasmania , 1997 .

[13]  F. Ludwig,et al.  A Study of Aerosols in Pacific Air Masses , 1969 .

[14]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[15]  A. H. Woodcock SALT NUCLEI IN MARINE AIR AS A FUNCTION OF ALTITUDE AND WIND FORCE , 1953 .

[16]  J. Gras,et al.  Marine aerosol at southern mid‐latitudes , 1983 .

[17]  M. Andreae,et al.  The flux of dimethylsulfide from the oceans to the atmosphere , 1982 .

[18]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[19]  Toby N. Carlson,et al.  Vertical and areal distribution of Saharan dust over the western equatorial north Atlantic Ocean , 1972 .

[20]  J. W. Fitzgerald,et al.  Aerosol size distributions in air masses advecting off the east coast of the United States , 1985 .

[21]  T. Carlson,et al.  The Large-Scale Movement of Saharan Air Outbreaks over the Northern Equatorial Atlantic , 1972 .

[22]  G. Gobbi,et al.  Altitude-resolved properties of a Saharan dust event over the Mediterranean , 2000 .

[23]  Á. Mészáros,et al.  Concentration, size distribution and chemical nature of atmospheric aerosol particles in remote oceanic areas , 1974 .

[24]  T. Bates,et al.  Dimethyl sulfide in the Equatorial Pacific Ocean: A natural source of sulfur to the atmosphere , 1983 .

[25]  A. H. Woodcock,et al.  THE PRODUCTION, CONCENTRATION, AND VERTICAL DISTRIBUTION OF THE SEA‐SALT AEROSOL * , 1980 .

[26]  Michael Garstang,et al.  Saharan dust in the Amazon Basin , 1992 .

[27]  D. Hofmann Twenty Years Of Balloon-Borne Tropospheric Aerosol Measurements , 1993 .

[28]  M. H. Smith,et al.  Physicochemical properties of aerosols over the northeast Atlantic: Evidence for wind‐speed‐related submicron sea‐salt aerosol production , 1993 .

[29]  K. T. Whitby,et al.  Characterization of California aerosols—II. Aerosol size distribution measurements in the Mojave Desert☆ , 1975 .

[30]  P. Quinn,et al.  Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport , 1996 .

[31]  K. Voss,et al.  Dominance of mineral dust in aerosol light-scattering in the North Atlantic trade winds , 1996, Nature.

[32]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[33]  A. Clarke,et al.  The Pacific marine aerosol: Evidence for natural acid sulfates , 1987 .

[34]  L. Thomason,et al.  A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994 , 1997 .

[35]  R. W. Gillett,et al.  Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air , 1991, Nature.

[36]  Hiroaki Minoura,et al.  The transport and spacial scale of Asian dust‐storm clouds: a case study of the dust‐storm event of April 1979 , 1983 .

[37]  J. Lelieveld,et al.  Role of mineral aerosol as a reactive surface in the global troposphere , 1996 .

[38]  G. M. Frick,et al.  Submicron aerosol size distributions measured over the tropical and South Pacific , 1990 .

[39]  G. Gobbi Lidar estimation of stratospheric aerosol properties: Surface, volume, and extinction to backscatter ratio , 1995 .

[40]  C. Junge,et al.  New results in background aerosols studies from the Atlantic expedition of the R.V. Meteor, Spring 1969☆ , 1971 .

[41]  J. Seinfeld,et al.  Radiative forcing by mineral dust aerosols : sensitivity to key variables , 1998 .

[42]  I. Sokolik,et al.  Complex refractive index of atmospheric dust aerosols , 1993 .

[43]  J. Prospero Mineral and sea salt aerosol concentrations in various ocean regions , 1979 .

[44]  C. Junge,et al.  Our knowledge of the physico‐chemistry of aerosols in the undisturbed marine environment , 1972 .

[45]  Joseph M. Prospero,et al.  Effect of relative humidity on light scattering by mineral dust aerosol as measured in the marine boundary layer over the tropical Atlantic Ocean , 1998 .

[46]  J. Joseph,et al.  Properties of Sharav (Khamsin) Dust–Comparison of Optical and Direct Sampling Data , 1980 .

[47]  J. Prospero,et al.  Atmospheric transport of soil dust from Africa to South America , 1981, Nature.

[48]  J. W. Fitzgerald,et al.  Marine aerosols: A review , 1991 .

[49]  J. Deluisi,et al.  Measured and calculated optical property profiles in the mixed layer and free troposphere , 1992 .

[50]  Philip B. Russell,et al.  Lidar measurement of particles and gases by elastic backscattering and differential absorption , 1976 .

[51]  V. Kovalev,et al.  Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient. , 1995, Applied optics.

[52]  A. Guenther,et al.  Sulfur emissions to the atmosphere from natural sourees , 1992 .

[53]  Y. Kaufman,et al.  Passive remote sensing of tropospheric aerosol and atmospheric , 1997 .

[54]  Bryan J. Johnson,et al.  Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41°N: Vertical profiles, size distribution, and volatility , 1993 .

[55]  D. Tanré,et al.  Assessment of the African airborne dust mass over the western Mediterranean Sea using Meteosat data , 1992 .

[56]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[57]  S. Ackerman,et al.  The Saudi Arabian heat low: Aerosol distributions and thermodynamic structure , 1982 .

[58]  P. Crutzen,et al.  Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry , 1997 .

[59]  E. M. Patterson,et al.  Commonalities in measured size distributions for aerosols having a soil-derived component , 1977 .

[60]  C. O'Dowd,et al.  Volatility of aerosol at Mace Head, on the west coast of Ireland , 1990 .

[61]  V. Kovalev Lidar measurement of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios. , 1993, Applied optics.

[62]  Y. Makino,et al.  Sea‐salt particles in the upper tropical troposphere , 1994 .

[63]  J. W. Fitzgerald,et al.  Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean , 1990 .

[64]  G. d’Almeida,et al.  A model for Saharan dust transport , 1986 .