Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface

Manipulating fluids by light at the nanoscale has been a long-sought-after goal for lab-on-a-chip applications. Plasmonic heating has been demonstrated to control microfluidic dynamics due to the enhanced and confined light absorption from the intrinsic losses of metals. Dielectrics, counterpart of metals, is used to avoid undesired thermal effects due to its negligible light absorption. Here, we report an innovative optofluidic system that leverages a quasi-BIC driven all-dielectric metasurface to achieve nanoscale control of temperature and fluid motion. Our experiments show that suspended particles down to 200 nanometers can be rapidly aggregated to the center of the illuminated metasurface with a velocity of tens of micrometers per second, and up to millimeter-scale particle transport is demonstrated. The strong electromagnetic field enhancement of the quasi-BIC resonance can facilitate increasing the flow velocity up to 3-times compared with the off-resonant situation. We also experimentally investigate the dynamics of particle aggregation with respect to laser wavelength and power. A physical model is presented to elucidate the phenomena and surfactants are added to the particle colloid to validate the model. Our study demonstrates the application of the recently emerged all-dielectric thermonanophotonics in dealing with functional liquids and opens new frontiers in harnessing non-plasmonic nanophotonics to manipulate microfluidic dynamics. Moreover, the synergistic effects of optofluidics and high-Q all-dielectric nanostructures can hold enormous potential in high-sensitivity biosensing applications.

[1]  T. Krauss,et al.  Multiplexed near-field optical trapping , 2022, NanoScience + Engineering.

[2]  F. Cichos,et al.  Optical manipulation of single DNA molecules by depletion interactions , 2022, Optical Trapping and Optical Micromanipulation XIX.

[3]  S. Maier,et al.  Advances and applications of nanophotonic biosensors , 2022, Nature Nanotechnology.

[4]  J. Joseph,et al.  Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications , 2021, Nanophotonics.

[5]  J. J. Hernández-Sarria,et al.  Toward Lossless Infrared Optical Trapping of Small Nanoparticles Using Nonradiative Anapole Modes. , 2021, Physical review letters.

[6]  Justus C. Ndukaife,et al.  Multiplexed Long-Range Electrohydrodynamic Transport and Nano-Optical Trapping with Cascaded Bowtie Photonic Crystal Nanobeams. , 2021, Physical review letters.

[7]  F. Cichos,et al.  Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows , 2021, Nature communications.

[8]  T. Krauss,et al.  Exploring the Limit of Multiplexed Near-Field Optical Trapping , 2021, ACS Photonics.

[9]  Soon-Hong Kwon,et al.  Ultralow-threshold laser using super-bound states in the continuum , 2021, Nature Communications.

[10]  Justus C. Ndukaife,et al.  Nanoparticle Trapping in a Quasi-BIC System , 2021, ACS Photonics.

[11]  Y. Kivshar,et al.  Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles , 2021, Nature Communications.

[12]  Cheng Jiang,et al.  Surface Plasmon-Assisted Fluorescence Enhancing and Quenching: From Theory to Application. , 2021, ACS applied bio materials.

[13]  Ting Fu,et al.  Rapid One-Step Detection of Viral Particles Using an Aptamer-Based Thermophoretic Assay. , 2021, Journal of the American Chemical Society.

[14]  Y. Kivshar,et al.  All-dielectric thermonanophotonics , 2021, Advances in Optics and Photonics.

[15]  R. Quidant,et al.  Long-range optofluidic control with plasmon heating , 2021, Nature Communications.

[16]  H. P. Urbach,et al.  Plasmonic tweezers: for nanoscale optical trapping and beyond , 2021, Light, science & applications.

[17]  B. Zhen,et al.  Observation of miniaturized bound states in the continuum with ultra-high quality factors. , 2021, Science bulletin.

[18]  S. Cabrini,et al.  Ultrasensitive Surface Refractive Index Imaging Based on Quasi-Bound States in the Continuum. , 2020, ACS nano.

[19]  F. Cichos,et al.  Applications and challenges of thermoplasmonics , 2020, Nature Materials.

[20]  Y. Kivshar,et al.  Observation of Supercavity Modes in Subwavelength Dielectric Resonators , 2020, Advanced materials.

[21]  V. Mylnikov,et al.  Lasing Action in Single Subwavelength Particles Supporting Supercavity Modes. , 2020, ACS nano.

[22]  Li Ge,et al.  Ultrafast control of vortex microlasers , 2020, Science.

[23]  Juntao Li,et al.  High-Q Quasibound States in the Continuum for Nonlinear Metasurfaces. , 2019, Physical review letters.

[24]  H. Ho,et al.  Thermal Optofluidics: Principles and Applications , 2019, Advanced Optical Materials.

[25]  Jon A. Schwartz,et al.  Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study , 2019, Proceedings of the National Academy of Sciences.

[26]  Y. Kivshar,et al.  Nonlinear Metasurfaces Governed by Bound States in the Continuum , 2019, ACS Photonics.

[27]  Yuri S. Kivshar,et al.  Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval , 2019, Science Advances.

[28]  K. Crozier Quo vadis, plasmonic optical tweezers? , 2019, Light, science & applications.

[29]  Volkan Cevher,et al.  Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces , 2019, Nature Photonics.

[30]  Baoquan Ding,et al.  Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers , 2019, Nature Biomedical Engineering.

[31]  Liangfu Ni,et al.  Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering , 2018, Nature.

[32]  K. Crozier,et al.  Optical Trapping of Nanoparticles Using All-Silicon Nanoantennas , 2018, ACS Photonics.

[33]  Andrey Bogdanov,et al.  Meta-optics and bound states in the continuum. , 2018, Science bulletin.

[34]  G. Calafiore,et al.  Surface-Enhanced Raman and Fluorescence Spectroscopy with an All-Dielectric Metasurface , 2018, The Journal of Physical Chemistry C.

[35]  Duk-Yong Choi,et al.  Imaging-based molecular barcoding with pixelated dielectric metasurfaces , 2018, Science.

[36]  Yuebing Zheng,et al.  Opto-thermoelectric nanotweezers , 2018, Nature Photonics.

[37]  Yuebing Zheng,et al.  Interfacial-entropy-driven thermophoretic tweezers. , 2017, Lab on a chip.

[38]  Yuebing Zheng,et al.  Opto-thermophoretic assembly of colloidal matter , 2017, Science Advances.

[39]  I. Staude,et al.  Metamaterial-inspired silicon nanophotonics , 2017, Nature Photonics.

[40]  Yeshaiahu Fainman,et al.  Lasing action from photonic bound states in continuum , 2017, Nature.

[41]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[42]  Yuebing Zheng,et al.  Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis. , 2016, ACS nano.

[43]  A. Moilanen,et al.  Lasing in dark and bright modes of a finite-sized plasmonic lattice , 2016, Nature Communications.

[44]  Frank Cichos,et al.  Thermo-Osmotic Flow in Thin Films. , 2016, Physical review letters.

[45]  Robert Magnusson,et al.  Critical field enhancement of asymptotic optical bound states in the continuum , 2015, Scientific Reports.

[46]  S. Neale,et al.  Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis. , 2015, Biomedical optics express.

[47]  Theobald Lohmüller,et al.  Optical injection of gold nanoparticles into living cells. , 2015, Nano letters.

[48]  Serge Monneret,et al.  Photoinduced heating of nanoparticle arrays. , 2013, ACS nano.

[49]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[50]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[51]  T. Tlusty,et al.  Effects of long DNA folding and small RNA stem–loop in thermophoresis , 2012, Proceedings of the National Academy of Sciences.

[52]  J. Khurgin,et al.  Reflecting upon the losses in plasmonics and metamaterials , 2012 .

[53]  J. Khurgin,et al.  Scaling of losses with size and wavelength in nanoplasmonics and metamaterials , 2011, 1110.0753.

[54]  Xudong Fan,et al.  Optofluidic Microsystems for Chemical and Biological Analysis. , 2011, Nature photonics.

[55]  A. Libchaber,et al.  Thermal separation: interplay between the Soret effect and entropic force gradient. , 2011, Physical review letters.

[56]  Romain Quidant,et al.  Plasmon-assisted optofluidics. , 2011, ACS nano.

[57]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[58]  Brian P. Timko,et al.  Remotely Triggerable Drug Delivery Systems , 2010, Advanced materials.

[59]  Alois Würger,et al.  Thermal non-equilibrium transport in colloids , 2010 .

[60]  G. Baffou,et al.  Mapping heat origin in plasmonic structures. , 2010, Physical review letters.

[61]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[62]  Hong-Ren Jiang,et al.  Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. , 2009, Physical review letters.

[63]  Roberto Piazza,et al.  Thermophoresis in colloidal suspensions , 2008 .

[64]  Suresh V. Garimella,et al.  Recent advances in microscale pumping technologies: a review and evaluation , 2008 .

[65]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[66]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[67]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[68]  Roberto Piazza,et al.  'Thermal forces': colloids in temperature gradients , 2004 .

[69]  J. Santiago,et al.  A review of micropumps , 2004 .

[70]  Dieter Braun,et al.  Trapping of DNA by thermophoretic depletion and convection. , 2002, Physical review letters.

[71]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[72]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[73]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[74]  Kyrill Meyer Theory in application. , 2008, Nature materials.

[75]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[76]  C. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[77]  J. Neumann,et al.  Über merkwürdige diskrete Eigenwerte , 1993 .

[78]  Bert R. Meijboom,et al.  Review and Evaluation , 1987 .