Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover
暂无分享,去创建一个
Raymond E. Arvidson | Richard V. Morris | Steven W. Squyres | Benton C. Clark | Steven W. Ruff | Christian Schröder | Göstar Klingelhöfer | Iris Fleischer | Douglas W. Ming | Ralf Gellert | Albert S. Yen | D. C. Golden | D. Ming | S. Squyres | R. Morris | R. Arvidson | G. Klingelhöfer | R. Gellert | B. Clark | S. Ruff | K. Siebach | A. Yen | C. Schröder | D. Golden | I. Fleischer | Kirsten Siebach
[1] D. Ming,et al. Evidence for Calcium Carbonate at the Mars Phoenix Landing Site , 2009, Science.
[2] D. Ming,et al. Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate , 2008 .
[3] John F. Mustard,et al. Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .
[4] H. McSween,et al. Petrogenesis of high‐phosphorous Wishstone Class rocks in Gusev Crater, Mars , 2008 .
[5] D. Ming,et al. Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover , 2008 .
[6] William H. Farrand,et al. Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate , 2008 .
[7] R. Gellert,et al. Quantitative in situ determination of hydration of bright high‐sulfate Martian soils , 2008 .
[8] Jeffrey R. Johnson,et al. Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils , 2008 .
[9] J. Grant,et al. Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars , 2008 .
[10] D. Ming,et al. Detection of Silica-Rich Deposits on Mars , 2008, Science.
[11] A. Steele,et al. Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard , 2007 .
[12] A. F. C. Haldemann,et al. Pyroclastic Activity at Home Plate in Gusev Crater, Mars , 2007, Science.
[13] William H. Farrand,et al. Rocks of the Columbia Hills , 2006 .
[14] Rebecca Castano,et al. Geology of the Gusev cratered plains from the Spirit rover transverse , 2006 .
[15] D. Ming,et al. Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .
[16] William H. Farrand,et al. Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .
[17] B. Hapke,et al. Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols , 2005 .
[18] V. Hamilton,et al. Evidence for extensive, olivine-rich bedrock on Mars , 2005 .
[19] M. Darby Dyar,et al. Spectroscopic evidence for hydrous iron sulfate in the Martian soil , 2004 .
[20] Steven W. Squyres,et al. The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .
[21] U. Bonnes,et al. Athena MIMOS II Mossbauer spectrometer investigation , 2003 .
[22] R. Clark,et al. Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.
[23] J. Bandfield,et al. Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.
[24] H. Graber,et al. Impact of flow distortion corrections on turbulent fluxes estimated by the inertial dissipation method during the FETCH experiment on R/V L'Atalante , 2003 .
[25] Steven H. Silverman,et al. Miniature thermal emission spectrometer for the Mars Exploration Rover , 2002, SPIE Optics + Photonics.
[26] A. Treiman,et al. Hydrothermal Origin for Carbonate Globules in Martian Meteorite ALH84001: A Terrestrial Analogue from Spitsbergen (Norway) , 2002 .
[27] David C. Catling,et al. Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .
[28] D. Ming,et al. An experimental study on kinetically‐driven precipitation of calcium‐magnesium‐iron carbonates from solution: Implications for the low‐temperature formation of carbonates in martian meteorite Allan Hills 84001 , 2000 .
[29] B. Dale,et al. The thermal springs of Bockfjorden, Svalbard: II: selected aspects of trace element hydrochemistry , 1999 .
[30] H. Wiesmann,et al. The age of the carbonates in martian meteorite ALH84001. , 1999, Science.
[31] David C. Catling,et al. A chemical model for evaporites on early Mars: Possible sedimentary tracers of the early climate and implications for exploration , 1999 .
[32] M. Ramsey,et al. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .
[33] Harry Y. McSween,et al. A possible high-temperature origin for the carbonates in the martian meteorite ALH84001 , 1996, Nature.
[34] A. Treiman. A petrographic history of martian meteorite ALH84001: Two shocks and an ancient age , 1995 .
[35] D. Mittlefehldt,et al. ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .
[36] W. Griffin,et al. The lower crust and upper mantle beneath northwestern Spitsbergen: evidence from xenoliths and geophysics , 1987 .
[37] J. Kasting,et al. The case for a wet, warm climate on early Mars. , 1987, Icarus.
[38] S. Gaffey,et al. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 um): Anhydrous carbonate minerals , 1987 .
[39] J. Gooding. Chemical weathering on Mars - Thermodynamic stabilities of primary minerals /and their alteration products/ from mafic igneous rocks , 1978 .