Issues, progress and new results in robust adaptive control

We overview recent progress in the field of robust adaptive control with special emphasis on methodologies that use multiple-model architectures. We argue that the selection of the number of models, estimators and compensators in such architectures must be based on a precise definition of the robust performance requirements. We illustrate some of the concepts and outstanding issues by presenting a new methodology that blends robust non-adaptive mixed µ-synthesis designs and stochastic hypothesis-testing concepts leading to the so-called robust multiple model adaptive control (RMMAC) architecture. A numerical example is used to illustrate the RMMAC design methodology, as well as its strengths and potential shortcomings. The later motivated us to develop a variant architecture, denoted as RMMAC/XI, that can be effectively used in highly uncertain exogenous plant disturbance environments. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  Franco Blanchini The gain scheduling and the robust state feedback stabilization problems , 2000, IEEE Trans. Autom. Control..

[2]  R. Hawkes,et al.  Performance of Bayesian parameter estimators for linear signal models , 1976 .

[3]  J. Bokor,et al.  Linear parameter varying systems: A geometric theory and applications , 2005 .

[4]  Andres Marcos,et al.  Linear parameter-varying detection filter design for a Boeing 747-100/200 aircraft , 2005 .

[5]  Michael Athans,et al.  ISSUES ON ROBUST ADAPTIVE FEEDBACK CONTROL , 2005 .

[6]  Edoardo Mosca,et al.  Designing predictors for MIMO switching supervisory control , 2001 .

[7]  Michael Athans,et al.  Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics , 1985 .

[8]  Michael G. Safonov,et al.  The unfalsified control concept: A direct path from experiment to controller , 1995 .

[9]  Jeff S. Shamma,et al.  Analysis and design of gain scheduled control systems , 1988 .

[10]  Mohinder S. Grewal,et al.  Global Positioning Systems, Inertial Navigation, and Integration , 2000 .

[11]  Thomas S. Brinsmead,et al.  Multiple model adaptive control. Part 2: switching , 2001 .

[12]  Kumpati S. Narendra,et al.  Adaptive control using multiple models , 1997, IEEE Trans. Autom. Control..

[13]  Michael Athans,et al.  Analysis of gain scheduled control for nonlinear plants , 1990 .

[14]  Wilson J. Rugh,et al.  Gain scheduling for H-infinity controllers: a flight control example , 1993, IEEE Trans. Control. Syst. Technol..

[15]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[16]  N. Sandell,et al.  MAXIMUM LIKELIHOOD IDENTIFICATION OF STATE SPACE MODELS FOR LINEAR DYNAMIC SYSTEMS , 1978 .

[17]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[18]  M. Athans,et al.  State Estimation for Discrete Systems with Switching Parameters , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[19]  U. Grenander Stochastic processes and statistical inference , 1950 .

[20]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[21]  S. Fekri,et al.  Robust Mixed-Mu Synthesis Performance for Mass-Spring System with Stiffness Uncertainty , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[22]  A. Morse Supervisory control of families of linear set-point controllers , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[23]  Robert M. Gray,et al.  Probability, Random Processes, And Ergodic Properties , 1987 .

[24]  D. Lainiotis Optimal adaptive estimation: Structure and parameter adaption , 1971 .

[25]  J. Doob Stochastic processes , 1953 .

[26]  Lennart Ljung,et al.  On The Consistency of Prediction Error Identification Methods , 1976 .

[27]  M. Athans,et al.  Adaptive Estimation and Parameter Identification Using Multiple Model Estimation Algorithm , 1976 .

[28]  P.S. Maybeck,et al.  MMAE/MMAC control for bending with multiple uncertain parameters , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[29]  Thomas S. Brinsmead,et al.  Multiple model adaptive control with safe switching , 2001 .

[30]  Karl J. Åström,et al.  Limitations on control system performance , 1997, 1997 European Control Conference (ECC).

[31]  Michael G. Safonov,et al.  The unfalsified control concept and learning , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[32]  C. Silvestre,et al.  Uncertainty vs Performance Trade-Offs in Robust Feedback Control: A Mimo Case Study , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[33]  Y. Baram,et al.  An information theoretic approach to dynamical systems modeling and identification , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[34]  D. Lainiotis Optimal adaptive estimation: Structure and parameter adaptation , 1970 .

[35]  Brian D. O. Anderson,et al.  Adaptive Control via Finite Modelling and Robust Control , 1988 .

[36]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[37]  A. Morse Supervisory control of families of linear set-point controllers. 2. Robustness , 1997, IEEE Trans. Autom. Control..

[38]  Christopher Storm Greene An analysis of the multiple model adaptive control algorithm , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[39]  Michael Athans,et al.  The stochastic control of the F-8C aircraft using a multiple model adaptive control (MMAC) method--Part I: Equilibrium flight , 1977 .

[40]  KARL PETERSEN,et al.  LECTURES ON ERGODIC THEORY , 2002 .

[41]  Ian Postlethwaite,et al.  Affine LPV modelling and its use in gain-scheduled helicopter control , 1998 .

[42]  Wilson J. Rugh,et al.  Analytical Framework for Gain Scheduling , 1990, 1990 American Control Conference.

[43]  P.S. Maybeck,et al.  Control of a large space structure using MMAE/MMAC techniques , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[44]  A. Paul,et al.  Cost-detectability and Stability of Adaptive Control Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[45]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[46]  Michael G. Safonov,et al.  The unfalsified control concept and learning , 1997 .

[47]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[48]  D. Naidu,et al.  Optimal Control Systems , 2018 .

[49]  R.V. Monopoli,et al.  Adaptive control: The model reference approach , 1981, Proceedings of the IEEE.

[50]  A. S. Morse,et al.  A Bound for the Disturbance - to - Tracking - Error Gain of a Supervised Set-Point Control System , 1998 .

[51]  Peter M. Young,et al.  Controller design with mixed uncertainties , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[52]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[53]  A. Pascoal,et al.  RMMAC: a novel robust adaptive control scheme. Part II. Performance evaluation , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[54]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[55]  D. Magill Optimal adaptive estimation of sampled stochastic processes , 1965 .

[56]  A. Pascoal,et al.  RMMAC: a novel robust adaptive control scheme. Part I. Architecture , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[57]  Brian D. O. Anderson,et al.  Stability of adaptive systems: passivity and averaging analysis , 1986 .

[58]  B. Anderson,et al.  Multiple model adaptive control. Part 1: Finite controller coverings , 2000 .

[59]  Jamal Daafouz,et al.  State estimation for affine LPV systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[60]  J. Doyle,et al.  Practical computation of the mixed μ problem , 1992, 1992 American Control Conference.

[61]  M.G. Safonov,et al.  Stability and convergence in adaptive systems , 2004, Proceedings of the 2004 American Control Conference.

[62]  Michael G. Safonov,et al.  Automatic PID tuning: an application of unfalsified control , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[63]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[64]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[65]  A. Pascoal,et al.  A two-input two-output robust multiple model adaptive control (RMMAC) case study , 2006, 2006 American Control Conference.

[66]  Y. Baram,et al.  Consistent estimation on finite parameter sets with application to linear systems identification , 1978 .

[67]  K. Grigoriadis,et al.  A new approach to LPV gain-scheduling design and implementation , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[68]  Maria Letizia Corradini,et al.  Robust stabilization of multivariable uncertain plants via switching control , 2004, IEEE Transactions on Automatic Control.

[69]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[70]  Henry Rolan Shomber,et al.  An extended analysis of the multiple model adaptive control algorithm , 1980 .

[71]  Wilson J. Rugh,et al.  Interpolation of observer state feedback controllers for gain scheduling , 1999, IEEE Trans. Autom. Control..

[72]  John C. Doyle,et al.  Computing bounds for the mixed μ problem , 1995 .

[73]  A. Morse Supervisory control of families of linear set-point controllers Part I. Exact matching , 1996, IEEE Trans. Autom. Control..

[74]  R. Wang Unfalsified Direct Adaptive Control Using Multiple Controllers , 2004 .

[75]  Yoram Baram,et al.  Information, consistent estimation and dynamic system identification , 1977 .