Stochastic Limit-Cycle Oscillations of a Nonlinear System Under Random Perturbations

[1]  G. Zachmann,et al.  Stochastic methods , 2020, Cross-Layer Reliability of Computing Systems.

[2]  Josephus Hulshof,et al.  Metabolic pathways and optimisation , 2019, Complexity Science.

[3]  M. Peletier,et al.  Complexity Science:An Introduction , 2019 .

[4]  H. Berg Random Walks in Biology , 2018 .

[5]  Xiang Zhou,et al.  Quasi-Potential Calculation and Minimum Action Method for Limit Cycle , 2018, J. Nonlinear Sci..

[6]  B. Drossel,et al.  Analysis of stochastic bifurcations with phase portraits , 2018, PloS one.

[7]  Paul C. Bressloff,et al.  A Variational Method for Analyzing Stochastic Limit Cycle Oscillators , 2017, SIAM J. Appl. Dyn. Syst..

[8]  H. Qian,et al.  Kinematic basis of emergent energetics of complex dynamics , 2017, EPL (Europhysics Letters).

[9]  Tiejun Li,et al.  Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond. , 2015, The Journal of chemical physics.

[10]  Chunhe Li,et al.  Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle , 2014, Proceedings of the National Academy of Sciences.

[11]  H. Feng,et al.  Non-equilibrium transition state rate theory , 2014 .

[12]  Liufang Xu,et al.  The extinction differential induced virulence macroevolution , 2014 .

[13]  Erkang Wang,et al.  The Potential and Flux Landscape Theory of Ecology , 2014, PloS one.

[14]  H. Nakanishi,et al.  Hamilton-Jacobi method for molecular distribution function in a chemical oscillator. , 2013, The Journal of chemical physics.

[15]  Jin Wang,et al.  The potential and flux landscape, Lyapunov function and non-equilibrium thermodynamics for dynamic systems and networks with an application to signal-induced Ca2+ oscillation , 2013 .

[16]  F. Zhang,et al.  The potential and flux landscape theory of evolution. , 2012, The Journal of chemical physics.

[17]  Guang-Ren Duan,et al.  Periodic Lyapunov Equation Based Approaches to the Stabilization of Continuous-Time Periodic Linear Systems , 2012, IEEE Transactions on Automatic Control.

[18]  H. Feng,et al.  Landscape and global stability of nonadiabatic and adiabatic oscillations in a gene network. , 2012, Biophysical journal.

[19]  G. Seber,et al.  Multivariate Normal Distribution , 2012 .

[20]  H. Qian Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems—an analytical theory , 2011 .

[21]  H. Qian,et al.  Landscapes of non-gradient dynamics without detailed balance: stable limit cycles and multiple attractors. , 2010, Chaos.

[22]  Jin Wang,et al.  Kinetic paths, time scale, and underlying landscapes: a path integral framework to study global natures of nonequilibrium systems and networks. , 2010, The Journal of chemical physics.

[23]  M. Hjortso,et al.  Partial Differential Equations , 2010 .

[24]  Hong Qian,et al.  Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schlögl model revisited , 2009, Journal of The Royal Society Interface.

[25]  Erkang Wang,et al.  Robustness, dissipations and coherence of the oscillation of circadian clock: potential landscape and flux perspectives , 2008, PMC biophysics.

[26]  Jin Wang,et al.  Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations , 2008, Proceedings of the National Academy of Sciences.

[27]  H. Touchette The large deviation approach to statistical mechanics , 2008, 0804.0327.

[28]  T. Kurtz,et al.  Large Deviations for Stochastic Processes , 2006 .

[29]  D. Thouless,et al.  Structure of stochastic dynamics near fixed points. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Qian,et al.  Mathematical Theory of Nonequilibrium Steady States: On the Frontier of Probability and Dynamical Systems , 2004 .

[31]  P. Ao Stochastic Dynamical Structure (SDS) of Nonequilibrium Processes in the Absence of Detailed Balance. II: construction of SDS with nonlinear force and multiplicative noise , 2004, 0803.4356.

[32]  V. Benci,et al.  The Semiclassical Limit of the Nonlinear Schrödinger Equation in a Radial Potential , 2002 .

[33]  H. Qian Mesoscopic nonequilibrium thermodynamics of single macromolecules and dynamic entropy-energy compensation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  H. Qian Mathematical formalism for isothermal linear irreversibility , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  Shanben Chen,et al.  Existence of positive definite solution to periodic Riccati differential equation , 2000, Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No.00EX393).

[36]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[37]  J. Ross,et al.  Fluctuations near limit cycles in chemical reaction systems , 1996 .

[38]  J. Hopfield Physics, Computation, and Why Biology Looks so Different , 1994 .

[39]  Vicente Hernández,et al.  Differential periodic Riccati equations: Existence and uniqueness of nonnegative definite solutions , 1993, Math. Control. Signals Syst..

[40]  Wlodzimierz Bryc,et al.  A remark on the connection between the large deviation principle and the central limit theorem , 1993 .

[41]  A. Dembo,et al.  Large Deviations for Quadratic Functionals of Gaussian Processes , 1993 .

[42]  Dykman,et al.  Stationary probability distribution near stable limit cycles far from Hopf bifurcation points. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Klaus Schulten,et al.  Effect of noise and perturbations on limit cycle systems , 1991 .

[44]  Hu Gang,et al.  Stationary solution of master equations in the large-system-size limit. , 1987 .

[45]  Joel Keizer,et al.  Statistical Thermodynamics of Nonequilibrium Processes , 1987 .

[46]  S. Varadhan,et al.  Large deviations for stationary Gaussian processes , 1985 .

[47]  Robert Graham,et al.  On the weak-noise limit of Fokker-Planck models , 1984 .

[48]  Patrizio Colaneri,et al.  Stability Analysis of Linear Periodic Systems Via the Lyapunov Equation , 1984 .

[49]  Thomas G. Kurtz,et al.  The Central Limit Theorem for Markov Chains , 1981 .

[50]  C. Holland Stochastically perturbed limit cycles , 1978, Journal of Applied Probability.

[51]  W. Fleming Exit probabilities and optimal stochastic control , 1977 .

[52]  R. Dobbertin On Functional Relations between Reduced Distribution Functions and Entropy Production by Non-Hamiltonian Perturbations , 1976 .

[53]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[54]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[55]  R. Kubo,et al.  Fluctuation and relaxation of macrovariables , 1973 .

[56]  T. Kurtz The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .

[57]  P. Anderson More is different. , 1972, Science.

[58]  William Feller,et al.  The General Diffusion Operator and Positivity Preserving Semi-Groups in One Dimension , 1954 .

[59]  J. E. Moyal Stochastic Processes and Statistical Physics , 1949 .

[60]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[61]  Tiejun Li,et al.  Realization of Waddington ’ s Metaphor : Potential Landscape , Quasi-potential , A-type Integral and Beyond , 2015 .

[62]  M. Kardar Statistical physics of fields , 2007 .

[63]  Minping Qian,et al.  Mathematical Theory of Nonequilibrium Steady States , 2004 .

[64]  S. Orszag,et al.  Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. , 1999 .

[65]  E. Grenier,et al.  Semiclassical limit of the nonlinear Schrödinger equation in small time , 1998 .

[66]  Hitoshi Ishii,et al.  A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities , 1985 .

[67]  M. I. Freĭdlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[68]  R. Graham,et al.  On the weak-noise limit of Fokker-Planck models , 1984 .

[69]  W. Steeb Generalized liouville equation, entropy, and dynamic systems containing limit cycles , 1979 .

[70]  R Dobbertin On Functional Relations between Reduced Distribution Functions and Entropy Production by Non-Hamiltonian Perturbations , 1976 .