Green Composites: Introductory Overview

The gowning environmental concerns lead to the development of sustainable and eco-friendly products made of natural resources called green composites. This chapter gives an introductory overview of green composites. Different types of matrix and natural fiber used for the development of green composites have been discussed thoroughly by investigating their properties and fabrication methods. The applications of green composites in different fields have been reviewed. The machining and joining behavior of green composites has also been discussed in the present chapter.

[1]  S. Kaliaguine,et al.  Catalytic grafting: A new technique for polymer–fiber composites I. Polyethylene–asbestos composites , 1992 .

[2]  P. Dubois,et al.  PLA composites: From production to properties. , 2016, Advanced drug delivery reviews.

[3]  Jeffrey R. Alcock,et al.  Review of Factors that Affect Shrinkage of Molded Part in Injection Molding , 2014 .

[4]  Paul M. Weaver,et al.  Green composites: A review of material attributes and complementary applications , 2014 .

[5]  N. Reddy,et al.  Properties and potential applications of natural cellulose fibers from cornhusks , 2005 .

[6]  M. K. Lila,et al.  PLA/banana fiber based sustainable biocomposites: A manufacturing perspective , 2020 .

[7]  Frédéric Lachaud,et al.  Experimental analysis of drilling damage in thin carbon/epoxy plate using special drills , 2000 .

[8]  Yong Cao,et al.  Development and mechanical properties of bagasse fiber reinforced composites , 2007 .

[9]  Guoping Chen,et al.  The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. , 2010, Biomaterials.

[10]  A. Aluigi,et al.  Composite biomaterials from fibre wastes: Characterization of wool–cellulose acetate blends , 2008 .

[11]  E. Rudnik Compostable Polymer Properties and Packaging Applications , 2013 .

[12]  Susan Selke,et al.  Natural Fibers, Biopolymers, and Biocomposites: An Introduction , 2005 .

[13]  C. Wilkinson,et al.  Nanotechniques and approaches in biotechnology , 2001 .

[14]  Rakesh Potluri Natural Fiber-Based Hybrid Bio-composites: Processing, Characterization, and Applications , 2019 .

[15]  R. Wu,et al.  Enhancement of the mechanical properties and interfacial interaction of a novel chitin-fiber-reinforced poly(∈-caprolactone) composite by irradiation treatment , 2002 .

[16]  Liming Liu,et al.  Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly(butylene succinate) composites reinforced with cotton stalk bast fibers , 2011 .

[17]  H. Takagi,et al.  FLEXURAL PROPERTIES OF INJECTION-MOLDED BAMBOO/PBS COMPOSITES , 2010 .

[18]  I. Ward,et al.  Structure and mechanical properties of PGA crystals and fibres , 2006 .

[19]  S. O. Ismail,et al.  Characterization of Nano-Mechanical, Surface and Thermal Properties of Hemp Fiber-Reinforced Polycaprolactone (HF/PCL) Biocomposites , 2020 .

[20]  Boobalan Thulasinathan,et al.  Thermal-chemical and biodegradation behaviour of alginic acid treated flax fibres/ poly(hydroxybutyrate-co-valerate) PHBV green composites in compost medium , 2019, Biocatalysis and Agricultural Biotechnology.

[21]  Shinji Ochi,et al.  Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin , 2006 .

[22]  Satoshi Kobayashi,et al.  Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites , 2011 .

[23]  K. Debnath,et al.  Experimental investigations on drilling of lignocellulosic fiber reinforced composite laminates , 2018, Journal of Manufacturing Processes.

[24]  K. Nakamae,et al.  Kenaf reinforced biodegradable composite , 2003 .

[25]  Waham Ashaier Laftah,et al.  Influence of natural fibers on the mechanical properties and biodegradation of poly(lactic acid) and poly(ε-caprolactone) composites: A review , 2012 .

[26]  Biqiong Chen,et al.  Mechanical and viscoelastic properties of chitin fiber reinforced poly(ε-caprolactone) , 2005 .

[27]  K. Zaman,et al.  Effect of Grafting on Properties of Oil Palm Empty Fruit Bunch Fiber Reinforced Polycaprolactone Biocomposites , 2010 .

[28]  E. Araújo,et al.  Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties , 2019, Materials Research Express.

[29]  Hong Xu,et al.  Biodegradable Composites: Ramie Fibre Reinforced PLLA-PCL Composite Prepared by in Situ Polymerization Process , 2008 .

[30]  Anil N. Netravali,et al.  Characterization of interfacial and mechanical properties of “green” composites with soy protein isolate and ramie fiber , 2002 .

[31]  Hiroshi Ito,et al.  Mechanical properties of bio-absorbable PLA/PGA fiber-reinforced composites , 2014 .

[32]  G. Ben,et al.  Fabrication of hemp fiber-reinforced green composites with organoclay-filled poly(butylene succinate) matrix by pultrusion process , 2014 .

[33]  C. Aumnate,et al.  Rheological, tensile, and thermal properties of poly(butylene succinate) composites filled with two types of cellulose (kenaf cellulose fiber and commercial cellulose) , 2020 .

[34]  Satoshi Kobayashi,et al.  Effects of surface treatment on mechanical and thermal properties of jute fabric-reinforced poly(butylene succinate) biodegradable composites , 2014 .

[35]  R. J. Gaymans,et al.  Alternating polyesteramides based on 1,4-butylene terephthalamide: 2. Alternating polyesteramides based on a single, linear diol (4NTm) , 1997 .

[36]  K. Debnath,et al.  Experimental analysis of tensile and compressive failure load in single-lap bolted joint of green composites , 2019, Composite Structures.

[37]  Ravinder Kataria,et al.  Potential biodegradable matrices and fiber treatment for green composites: A review , 2019, AIMS Materials Science.

[38]  Qiuying Li,et al.  Influence of heat treatment on the heat distortion temperature of poly(lactic acid)/bamboo fiber/talc hybrid biocomposites , 2012 .

[39]  V. Guillard,et al.  Sustainable food packaging: Valorising wheat straw fibres for tuning PHBV-based composites properties , 2015 .

[40]  Valeria Chiono,et al.  An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering , 2014, International journal of molecular sciences.

[41]  Mohan Rao Nalluri,et al.  Processing and characterization of jute fiber reinforced hybrid biocomposites based on polylactide/polycaprolactone blends , 2012 .

[42]  T. Subash,et al.  BAST FIBERS REINFORCED GREEN COMPOSITES FOR AIRCRAFT INDOOR STRUCTURES APPLICATIONS: REVIEW , 2015 .

[43]  S. Hong,et al.  Analytical study on the 3D-printed structure and mechanical properties of basalt fiber-reinforced PLA composites using X-ray microscopy , 2019, Composites Science and Technology.

[44]  Fujun Xu,et al.  Fabrication and mechanical properties of flaxseed fiber bundle-reinforced polybutylene succinate composites , 2020, Journal of Industrial Textiles.

[45]  I. Singh,et al.  Novel Aloe Vera fiber reinforced biodegradable composites—Development and characterization , 2016 .

[46]  Sandeep S. Ahankari,et al.  Mechanical behaviour of agro-residue reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate), (PHBV) green composites: A comparison with traditional polypropylene composites , 2011 .

[47]  Arlindo Silva,et al.  Applications of Green Composite Materials , 2016 .

[48]  J. Paulo Davim,et al.  Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments , 2005 .

[49]  M. Wolcott,et al.  Study of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/Bamboo Pulp Fiber Composites: Effects of Nucleation Agent and Compatibilizer , 2008 .

[50]  Z. Ishak,et al.  Mechanical and Morphology Behaviours of Polybutylene (succinate)/Thermoplastic Polyurethaneblend , 2016 .

[51]  K. Debnath,et al.  Analysis of tensile failure load of single-lap green composite specimen welded by high-frequency ultrasonic vibration , 2020 .

[52]  Elisa Zini,et al.  Green composites: An overview , 2011 .

[53]  Maya Jacob John,et al.  Biofibres and Biocomposites , 2008 .

[54]  Aliakbar Gholampour,et al.  A review of natural fiber composites: properties, modification and processing techniques, characterization, applications , 2019, Journal of Materials Science.

[55]  Anil N. Netravali,et al.  Composites get greener , 2003 .

[56]  A. Hassan,et al.  Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties , 2010 .

[57]  P. Dubois,et al.  The production and properties of polylactide composites filled with expanded graphite , 2010 .

[58]  Yong Guo,et al.  Properties of Luffa Fiber Reinforced PHBV Biodegradable Composites , 2019, Polymers.

[59]  Hota V. S. GangaRao,et al.  Critical review of recent publications on use of natural composites in infrastructure , 2012 .

[60]  Experimental analysis of tensile and compressive failure load in single-lap adhesive joint of green composites , 2020, International Journal of Adhesion and Adhesives.

[61]  R. Larock,et al.  Green composites from a conjugated linseed oil-based resin and wheat straw , 2010 .

[62]  M. C. Rezende,et al.  A new eco‐friendly green composite for antistatic packaging: Green low‐density polyethylene/glassy carbon , 2020 .

[63]  G. Rothenberg,et al.  Plantics-GX: a biodegradable and cost-effective thermoset plastic that is 100% plant-based. , 2017, Faraday discussions.

[64]  Jung Tae Lee,et al.  Mechanical properties of denim fabric reinforced poly(lactic acid) , 2010 .

[65]  S. Iannace,et al.  Relationship between processing and properties of biodegradable composites based on PCL/starch matrix and sisal fibers , 2001 .

[66]  Inderdeep Singh,et al.  Development and characterization of PLA-based green composites , 2014 .

[67]  Christophe Baley,et al.  Seawater ageing of flax/poly(lactic acid) biocomposites , 2009 .

[68]  T. R. Rigolin,et al.  Compatibilizer Acidity in Coir-Reinforced PLA Composites: Matrix Degradation and Composite Properties , 2019, Journal of Polymers and the Environment.

[69]  Huang Zhiliang,et al.  Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber , 2018 .

[70]  Debes Bhattacharyya,et al.  Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review , 2016, Materials.

[71]  Seung‐Hwan Lee,et al.  Mechanical and thermal flow properties of wood flour–biodegradable polymer composites , 2003 .

[72]  K. Jayaraman Manufacturing sisal–polypropylene composites with minimum fibre degradation , 2003 .

[73]  R. Scaffaro,et al.  Effect of adding wood flour to the physical properties of a biodegradable polymer , 2008 .

[74]  Alireza Ashori,et al.  Wood-plastic composites as promising green-composites for automotive industries! , 2008, Bioresource technology.

[75]  Manjusri Misra,et al.  ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation , 2005 .

[76]  B. Shi,et al.  Temperature-dependent Polylactic Acid (PLA) anaerobic biodegradability , 2012 .

[77]  K. Sandeep,et al.  DYNAMIC ANALYSIS OF BANANA FIBER REINFORCED HIGH-DENSITY POLYETHYLENE/POLY ( -CAPROLACTONE) COMPOSITES , 2008 .

[78]  Amir Nourbakhsh,et al.  Bio-based composites from waste agricultural residues. , 2010, Waste management.

[79]  Gunnar Henrik Seide,et al.  Polymer fiber-based biocomposites for medical sensing applications , 2019, Materials for Biomedical Engineering.

[80]  M. Ramachandra,et al.  Green Composites: A Review , 2018 .

[81]  Anil N. Netravali,et al.  Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin , 1999 .

[82]  M. Skrifvars,et al.  Natural fibres as reinforcement in polylactic acid (PLA) composites , 2003 .

[83]  Shengmin Zhang,et al.  A high-strength biodegradable thermoset polymer for internal fixation bone screws: Preparation, in vitro and in vivo evaluation. , 2019, Colloids and surfaces. B, Biointerfaces.

[84]  Xiaodong Chen,et al.  Nonisothermal crystallization behaviors of silk‐fibroin‐fiber‐reinforced poly(ϵ‐caprolactone) biocomposites , 2009 .

[85]  Mikael Skrifvars,et al.  A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers , 2015 .

[86]  Richard Stewart,et al.  Automotive composites offer lighter solutions , 2010 .

[87]  Kaichang Li,et al.  Investigation of soy protein-kymene® adhesive systems for wood composites , 2004 .

[88]  H. Khalil,et al.  Green composites from sustainable cellulose nanofibrils: A review , 2012 .

[89]  S. Saravanan,et al.  Mechanical Properties and Wear Properties of Kenaf – Aloe Vera – Jute Fiber Reinforced Natural Fiber Composites , 2018 .

[90]  A. Netravali,et al.  'Green' Composites Using Modified Soy Protein Concentrate Resin and Flax Fabrics and Yarns , 2004 .

[91]  Arlindo Silva,et al.  Green composites: A review of adequate materials for automotive applications , 2013 .

[92]  M. Errico,et al.  Crystallization behavior of poly(hydroxybytyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites , 2007 .

[93]  Sara Mantero,et al.  Clinical transplantation of a tissue-engineered airway , 2008, The Lancet.

[94]  F. Mantia,et al.  Green composites: A brief review , 2011 .

[95]  J. H. Mina,et al.  Micro- and Macromechanical Properties of a Composite with a Ternary PLA–PCL–TPS Matrix Reinforced with Short Fique Fibers , 2020, Polymers.

[96]  Yutaka Tokiwa,et al.  Biodegradability and biodegradation of poly(lactide) , 2006, Applied Microbiology and Biotechnology.

[97]  K. Palanikumar,et al.  Assessment of factors influencing surface roughness on the machining of glass fiber-reinforced polymer composites , 2006 .

[98]  K. Ghavami Bamboo as reinforcement in structural concrete elements , 2005 .

[99]  E. Radovanovic,et al.  Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites , 2010 .

[100]  E. Frollini,et al.  Poly(butylene succinate) reinforced with different lignocellulosic fibers , 2013 .

[101]  E. Fancello,et al.  Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during In Vitro Degradation , 2017, International journal of biomaterials.

[102]  C. Nicolae,et al.  Thermal and mechanical properties of poly(3-hydroxybutyrate) reinforced with cellulose fibers from wood waste , 2020 .

[103]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[104]  A. Netravali,et al.  Characterization of ramie fiber/soy protein concentrate (SPC) resin interface , 2004 .

[105]  Fengzhu Lv,et al.  Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) composites , 2012 .