An ac electroosmosis device for the detection of bioparticles with piezoresistive microcantilever sensors

This work reports on the behavior of piezoresistive microcantilever sensors under optimizing conditions of ac electroosmotic enhancement. Piezoresistive microcantilevers are used as sensor elements for detection of concentrated bio-particles. Without preconcentrating the samples, using ac electroosmosis, these bio-particles have been manipulated onto the piezoresistive microcantilever. A piezoresistive microcantilever senses the dimensional changes upon particle exposure as a resistance change. This paper represents the integration of ac electroosmosis with a piezoresistive micro-cantilever sensor for the detection of bio-particles. A working prototype is presented here, and the experiments are conducted on Herpes Simplex type-1 virus (HSV-1) and Escherichia Coli (E. coli) bacteria.

[1]  Ping Wang,et al.  Electrokinetic micropump and micromixer design based on ac faradaic polarization , 2004 .

[2]  Hywel Morgan,et al.  Dielectrophoretic investigations of sub-micrometre latex spheres , 1997 .

[3]  Wei Wu,et al.  A compact dual-tip STM design , 2006, IEEE Transactions on Nanotechnology.

[4]  William G Delinger,et al.  Viral detection using an embedded piezoresistive microcantilever sensor , 2003 .

[5]  K. Manygoats,et al.  Investigation of DNA sensing using piezoresistive microcantilever probes , 2004, IEEE Sensors Journal.

[6]  H Morgan,et al.  Separation of submicron bioparticles by dielectrophoresis. , 1999, Biophysical journal.

[7]  Chih-Ming Ho,et al.  Electrokinetic bioprocessor for concentrating cells and molecules. , 2004, Analytical chemistry.

[8]  Kin Fong Lei,et al.  Electrokinetic DNA concentration in microsystems , 2009 .

[9]  Castellanos,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  A. Ramos,et al.  A linear analysis of the effect of Faradaic currents on traveling-wave electroosmosis. , 2007, Journal of colloid and interface science.

[11]  Jiehong Wu,et al.  Enhancing microcantilever capability with integrated AC electroosmotic trapping , 2007 .

[12]  J. Miao,et al.  Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Sonia Grego,et al.  An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[14]  T. Hanai,et al.  Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization. , 1980, Biophysical journal.

[15]  D S Goodsell,et al.  Inside a living cell. , 1991, Trends in biochemical sciences.

[16]  David J Beebe,et al.  An evaporation-based microfluidic sample concentration method. , 2002, Lab on a chip.

[17]  Martin Z. Bazant,et al.  Fast ac electro-osmotic micropumps with nonplanar electrodes , 2006 .

[18]  Hsueh-Chia Chang,et al.  Long-Range AC Electroosmotic Trapping and Detection of Bioparticles , 2005 .

[19]  Castellanos,et al.  AC Electric-Field-Induced Fluid Flow in Microelectrodes. , 1999, Journal of colloid and interface science.

[20]  H. Morgan,et al.  Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws , 2003 .

[21]  R. Pashley,et al.  De-gassed water is a better cleaning agent. , 2005, The journal of physical chemistry. B.

[22]  R. Chien,et al.  Sample stacking in laboratory-on-a-chip devices. , 2001, Journal of chromatography. A.

[23]  W. Chiu,et al.  Seeing the herpesvirus capsid at 8.5 A. , 2000, Science.

[24]  H. Morgan,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  E. Carstensen,et al.  Passive Electrical Properties of Microorganisms: I. Conductivity of Escherichia coli and Micrococcus lysodeikticus. , 1965, Biophysical journal.

[26]  M. R. Bown,et al.  AC electroosmotic flow in a DNA concentrator , 2006 .

[27]  J. Wu,et al.  Interactions of electrical fields with fluids: laboratory-on-a-chip applications. , 2008, IET nanobiotechnology.

[28]  W. Hafezi,et al.  Exceptional mechanical and structural stability of HSV-1 unveiled with fluid atomic force microscopy , 2008, Journal of Cell Science.

[29]  S. Kuiper,et al.  Microsieves made with laser interference lithography for micro-filtration applications , 1999 .