NaCl responses in tomato calli and whole plants

[1]  A. Rus,et al.  Short-term salt tolerance mechanisms in differentially salt tolerant tomato species , 1999 .

[2]  L. Filippis,et al.  Physiological changes accompanying the induction of salt tolerance in Eucalyptus microcorys shoots in tissue culture , 1998 .

[3]  P. Sathish,et al.  Establishment of stable NaCl-resistant rice plant lines from anther culture: distribution pattern of K+/Na+ in callus and plant cells , 1997, Theoretical and Applied Genetics.

[4]  Manuel Acosta,et al.  Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species , 1997 .

[5]  P. M. Neumann Salinity resistance and plant growth revisited , 1997 .

[6]  T. Flowers,et al.  Metabolic engineering for increased salt tolerance - The next step - Response , 1996 .

[7]  H. Bohnert Metabolic energineering for increased salt tolerance-the next step , 1996 .

[8]  S. Lutts,et al.  Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza Sativa L.) callus cultures , 1996 .

[9]  D. Lösel,et al.  Contribution of Carbohydrates and other Solutes to Osmotic Adjustment in Wheat Leaves Under Water Stress , 1995 .

[10]  T. Flowers,et al.  Breeding for salinity resistance in crop plants: Where next? , 1995 .

[11]  B. Conger,et al.  Growth, proline accumulation and water relations of NaCl-selected and non-selected callus lines of Dactylis glomerata L. , 1995, Environmental and experimental botany.

[12]  R. Skirvin,et al.  Sources and Frequency of Somaclonal Variation , 1994 .

[13]  F. Pérez-Alfocea,et al.  Comparative salt responses at cell and whole-plant levels of cultivated and wild tomato species and their hybrid , 1994 .

[14]  M. Tal IN VITRO METHODOLOGY FOR INCREASING SALT TOLERANCE IN CROP PLANTS , 1993 .

[15]  F. Pérez-Alfocea,et al.  Osmotic adjustment in Lycopersicon esculentum and L. Pennellii under NaCl and polyethylene glycol 6000 iso–osmotic stresses , 1993 .

[16]  P. Dix The role of mutant cell lines in studies on environmental stress tolerance: An assessment , 1993 .

[17]  G. Cramer,et al.  Cellular responses of two rapid-cycling Brassica species, B. napus and B. carinata^ to seawater salinity , 1993 .

[18]  G. Guerrier,et al.  Salt-Responses in Lycopersicon esculentum Calli and whole Plants , 1992 .

[19]  D. Krieg,et al.  Osmotic adjustment in sorghum: I. Mechanisms of diurnal osmotic potential changes. , 1992, Plant physiology.

[20]  T. Flowers,et al.  Selection of donors for salt-tolerance in tomato using physiological traits , 1992 .

[21]  J. Cuartero,et al.  Salinity Tolerance in Four Wild Tomato Species using Vegetative Yield-Salinity Response Curves , 1991 .

[22]  M. Dracup Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms , 1991 .

[23]  R. Newton,et al.  Salinity Tolerance in Sorghum. II. Cell Culture Response to Sodium Chloride in S. bicolor and S. halepense , 1990 .

[24]  R. Newton,et al.  Solute contributions to osmotic potential in loblolly pine (Pinus taeda L.) callus , 1989 .

[25]  V. Moreno,et al.  Selection for NaCl Tolerance in Cell Culture of Three Canary Island Tomato Land Races. I. Recovery of Tolerant Plantlets from NaCl-Tolerant Cell Strains , 1988 .

[26]  P. Hasegawa,et al.  Cellular Mechanisms of Salinity Tolerance , 1986, HortScience.

[27]  P. Hasegawa,et al.  Adaptation of Tobacco Cells to NaCl. , 1985, Plant physiology.

[28]  M. Pitman Adaptation of barley roots to low oxygen supply and its relation to potassium and sodium uptake. , 1969, Plant physiology.