A New Discriminative Kernel from Probabilistic Models
暂无分享,去创建一个
Gunnar Rätsch | Motoaki Kawanabe | Klaus-Robert Müller | Sören Sonnenburg | Koji Tsuda | M. Kawanabe | K. Müller | S. Sonnenburg | G. Rätsch | K. Tsuda
[1] D. Cox,et al. Asymptotic techniques for use in statistics , 1989 .
[2] Lawrence R. Rabiner,et al. A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.
[3] Keinosuke Fukunaga,et al. Introduction to statistical pattern recognition (2nd ed.) , 1990 .
[4] Trevor F. Cox,et al. Discriminant analysis using non-metric multidimensional scaling , 1993, Pattern Recognit..
[5] Shun-ichi Amari,et al. Network information criterion-determining the number of hidden units for an artificial neural network model , 1994, IEEE Trans. Neural Networks.
[6] Christopher M. Bishop,et al. Neural networks for pattern recognition , 1995 .
[7] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[8] Joachim M. Buhmann,et al. Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[9] Sean R. Eddy,et al. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .
[10] Dan Geiger,et al. Graphical Models and Exponential Families , 1998, UAI.
[11] Klaus Obermayer,et al. Classi cation on Pairwise Proximity , 2007 .
[12] David Haussler,et al. Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.
[13] Tommi S. Jaakkola,et al. Maximum Entropy Discrimination , 1999, NIPS.
[14] David Haussler,et al. A Discriminative Framework for Detecting Remote Protein Homologies , 2000, J. Comput. Biol..
[15] Mark J. F. Gales,et al. Speech Recognition using SVMs , 2001, NIPS.
[16] Gunnar Rätsch,et al. Soft Margins for AdaBoost , 2001, Machine Learning.