One-dimensional Magnus-type platinum double salts

Interest in platinum-chain complexes arose from their unusual oxidation states and physical properties. Despite their compositional diversity, isolation of crystalline chains has remained challenging. Here we report a simple crystallization technique that yields a series of dimer-based 1D platinum chains. The colour of the Pt2+ compounds can be switched between yellow, orange and blue. Spontaneous oxidation in air is used to form black Pt2.33+ needles. The loss of one electron per double salt results in a metallic state, as supported by quantum chemical calculations, and displays conductivity of 11 S cm−1 at room temperature. This behaviour may open up a new avenue for controllable platinum chemistry.

[1]  Aron Walsh,et al.  Electronic Chemical Potentials of Porous Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[2]  Kent R. Mann,et al.  A Platinum(II) Extended Linear Chain Material That Selectively Uptakes Benzene , 2009 .

[3]  E. Zangrando,et al.  STRUCTURAL ASPECTS OF PT COMPLEXES CONTAINING MODEL NUCLEOBASES , 1996 .

[4]  K. Sakai,et al.  Di-μ-pivalamidato-κ4N:O;O :N-bis[(2,2'-bipyridine-κ2N, N')(sulfato-κO)platinum(III)] tetrahydrate in a head-to-tail isomerism , 2004 .

[5]  BARNETT ROSENBERG,et al.  Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode , 1965, Nature.

[6]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[7]  A. P. Ginsberg,et al.  Electronic Structure and Optical Spectrum of cis-Diammineplatinum α-Pyridone Blue: Metal-Metal Bonding and Charge Transfer in a Four-Atom Pt(2.25) Chain , 1984 .

[8]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[9]  Christopher H. Hendon,et al.  Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. , 2015, Journal of the American Chemical Society.

[10]  Tasuku Ito,et al.  A head-to-tail isomer of bis­[μ-2-(N′-methyl-4,4′-bipyridinium-1-yl)­acetamidato]­bis­[cis-diammineplatinum(II)] hexaperchlorate dihydrate , 2003 .

[11]  K. Fuwa,et al.  cis-Diammineplatinum .alpha.-pyrrolidone tan, a structural analog of platinum blues , 1982 .

[12]  M. E. Foster,et al.  Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices , 2014, Science.

[13]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[14]  A. Werner,et al.  Beitrag zur Konstitution anorganischer Verbindungen. XIX. Mitteilung. Über Platinoxalatoverbindungen , 1899 .

[15]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[16]  Christopher H. Hendon,et al.  Ligand design for long-range magnetic order in metal-organic frameworks. , 2014, Chemical communications.

[17]  Tasuku Ito,et al.  A head-to-head isomer of di-μ-pivalamidato-κ4N, O-bis[(1,10-phenanthroline-κ2N, N')platinum(II)] dinitrate dihydrate , 2003 .

[18]  Christopher H. Hendon,et al.  Conductive metal-organic frameworks and networks: fact or fantasy? , 2012, Physical chemistry chemical physics : PCCP.

[19]  Kazuko Matsumoto,et al.  Reaction of an α-pyrrolidonate-bridged cis-diammineplatinum(II) dimer with molecular oxygen and its application to the catalytic O2 oxidation of hydroquinone , 1995 .

[20]  Ian D. Williams,et al.  Synthesis, structure determination, and electronic structure characterization of two mixed-Valence tetranuclear platinum blues with bridging α-pyridonate or 1-methyluracilate ligands , 1987 .

[21]  A Alec Talin,et al.  A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. , 2011, Chemistry.

[22]  B. A. Scott,et al.  EPR Evidence for Metal-Insulator Transition in the , 1973 .

[23]  S. Lippard,et al.  Synthesis, structure, and platinum-195 NMR studies of binuclear complexes of cis-diammineplatinum(II) with bridging .alpha.-pyridonate ligands , 1983 .

[24]  R. Hoffmann,et al.  The band structure of the tetracyanoplatinate chain , 1978 .

[25]  U. Thewalt,et al.  Additive trans-influences of the axial ligand and metal-metal bond in diplatinum(III) complex leading to an asymmetric structure with penta- and hexacoordination of the two metals. , 1986, Journal of the American Chemical Society.

[26]  Kazuko Matsumoto,et al.  Crystal structure and carbon-13 and platinum-195 NMR spectra of an .alpha.-pyrrolidonate-bridged binuclear platinum(II) complex, [Pt2(NH3)4(C4H6NO)2]2(PF6)3(NO3).cntdot.H2O , 1989 .

[27]  A. Werner,et al.  Beitrag zur Konstitution anorganischer Verbindungen , 1895 .

[28]  Tasuku Ito,et al.  A head-to-head isomer of bis(μ-N-methyl­isonicotinamidato)­bis­[cis-diammineplatinum(II)] tetraperchlorate , 2003 .

[29]  Christopher H. Hendon,et al.  Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O) , 2015, Journal of the American Chemical Society.

[30]  Timothy R. Cook,et al.  Highly emissive platinum(II) metallacages. , 2015, Nature chemistry.

[31]  Peter Day,et al.  Mixed Valence Chemistry-A Survey and Classification , 1968 .

[32]  J. Gerring A case study , 2011, Technology and Society.

[33]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[34]  J. Barton,et al.  Synthesis and crystal structure of cis-diammineplatinum α-pyridone blue , 1977 .

[35]  W. Caseri,et al.  Magnus' Green Salt Revisited: Impact of Platinum–Platinum Interactions on Electronic Structure and Carrier Mobilities , 2006 .

[36]  Kazuko Matsumoto,et al.  Mixed-valent octanuclear platinum acetamide complex, [Pt8(NH3)16(C2H4NO)8]10+ , 1989 .

[37]  Tasuku Ito,et al.  New partially oxidized 1-D platinum chain complexes consisting of carboxylate-bridged cis-diammineplatinum dimer cations. , 2002, Journal of the American Chemical Society.

[38]  Christopher H. Hendon,et al.  Chemical principles underpinning the performance of the metal–organic framework HKUST-1 , 2015, Chemical science.

[39]  R. Bau,et al.  The first mononuclear PtIII complex. Molecular structures of (NBu4)[PtIII(C6Cl5)4] and of its parent compound {NBu4}2[PtII(C6Cl5)4]·2CH2Cl2 , 1984 .

[40]  J. Barton,et al.  Relationship of cis-diammineplatinum α-pyridone blue to other platinum blues. An x-ray photoelectron study , 1978 .

[41]  F. H. Burstall,et al.  201. Researches on residual affinity and co-ordination. Part XXXIV. 2 : 2′-Dipyridyl platinum salts , 1934 .

[42]  K. Krogmann Planar Complexes Containing Metal‐Metal Bonds , 1969 .

[43]  B. Rosenberg,et al.  The successful regression of large solid sarcoma 180 tumors by platinum compounds. , 1970, Cancer research.

[44]  Kazuko Matsumoto,et al.  Structures and Reactivities of Platinum-Blues and the Related Amidate-Bridged Platinumiii Compounds , 1999 .

[45]  G. Magnus Ueber einige Verbindungen des Platinchlorürs , 1828 .

[46]  S. Iijima,et al.  New Structural Aspects of α-Pyrrolidinonate- and α-Pyridonate-Bridged, Homo- and Mixed-Valence, Di- and Tetranuclear cis-Diammineplatinum Complexes: Eight New Crystal Structures, Stoichiometric 1:1 Mixture of Pt(2.25+)4 and Pt(2.5+)4, New Quasi-One-Dimensional Halide-Bridged [Pt(2.5+)4-Cl···]∞ Syste , 1998 .

[47]  J. Trosko,et al.  Platinum Compounds: a New Class of Potent Antitumour Agents , 1969, Nature.