Prediction of Energy Consumption in an Electric Arc Furnace Using Weka

[2]  Il Sohn,et al.  Review of Innovative Energy Savings Technology for the Electric Arc Furnace , 2014 .

[3]  Lars Kotthoff,et al.  Automated Machine Learning: Methods, Systems, Challenges , 2019, The Springer Series on Challenges in Machine Learning.

[4]  Sebastian Thiede,et al.  Achieving Environmental Performance Goals - Evaluation of Impact Factors Using a Knowledge Discovery in Databases Approach , 2016 .

[5]  Sergio Ramírez-Gallego,et al.  Imbalanced Data Preprocessing for Big Data , 2020 .

[6]  A. Ymeri,et al.  Impact of Photovoltaic Systems Placement, Sizing on Power Quality in Distribution Network , 2018 .

[7]  Thyago P. Carvalho,et al.  A systematic literature review of machine learning methods applied to predictive maintenance , 2019, Comput. Ind. Eng..

[8]  Muthuraman Thangaraj,et al.  Classification Algorithms with Attribute Selection:An Evaluation Study using WEKA , 2018 .

[9]  Shin-Dug Kim,et al.  Effective data prediction method for in-memory database applications , 2019, The Journal of Supercomputing.

[10]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[11]  Ian Witten,et al.  Data Mining , 2000 .

[12]  Manoj Kumar Tiwari,et al.  Modeling, analysis, and improvement of integrated productivity and energy consumption in a serial manufacturing system. , 2018 .

[13]  Jonathan C. Mayo-Maldonado,et al.  Analysis of electric arc furnaces efficiency via frequency spectrum-based arc coverage detection , 2017 .

[14]  Claudio Favi,et al.  Big data analysis for the estimation of disassembly time and de-manufacturing activity , 2020 .

[15]  Kendall Nygard,et al.  Smart grid data analytics for decision support , 2011, 2011 IEEE Electrical Power and Energy Conference.

[16]  John W. Graham,et al.  Analysis of Missing Data , 2012 .