Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models

We present a statistical model for characterizing texture images based on wavelet-domain hidden Markov models. With a small number of parameters, the new model captures both the subband marginal distributions and the dependencies across scales and orientations of the wavelet descriptors. Applied to the steerable pyramid, once it is trained for an input texture image, the model can be easily steered to characterize that texture at any other orientation. Furthermore, after a diagonalization operation, we obtain a rotation-invariant model of the texture image. We also propose a fast algorithm to approximate the Kullback-Leibler distance between two wavelet-domain hidden Markov models. We demonstrate the effectiveness of the new texture models in retrieval experiments with large image databases, where significant improvements are shown.

[1]  Paul Scheunders,et al.  Statistical texture characterization from discrete wavelet representations , 1999, IEEE Trans. Image Process..

[2]  Jian Fan,et al.  Texture Classification by Wavelet Packet Signatures , 1993, MVA.

[3]  Tieniu Tan,et al.  A Comparative Study of Rotation Invariant Classification and Retrieval of Texture Images , 1998, BMVC.

[4]  Minh N. Do,et al.  Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..

[5]  A. Kundu,et al.  Rotation and Gray Scale Transform Invariant Texture Identification using Wavelet Decomposition and Hidden Markov Model , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[7]  Rangasami L. Kashyap,et al.  A Model-Based Method for Rotation Invariant Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  James R. Bergen,et al.  Pyramid-based texture analysis/synthesis , 1995, Proceedings., International Conference on Image Processing.

[9]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[10]  Hyeokho Choi,et al.  Analysis of multiscale texture segmentation using wavelet-domain hidden Markov models , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[11]  Wen-Rong Wu,et al.  Correction To "rotation And Gray-scale Transform-invariant Texture Classification Using Spiral Resampling, Subband Decomposition, And Hidden Markov Model" , 1996, IEEE Trans. Image Process..

[12]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  X. Xia,et al.  Maximum likelihood texture analysis and classification using wavelet-domain hidden Markov models , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[16]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[17]  Fang Liu,et al.  Periodicity, Directionality, and Randomness: Wold Features for Image Modeling and Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[19]  S. Mallat A wavelet tour of signal processing , 1998 .

[20]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Richard G. Baraniuk,et al.  Image segmentation using wavelet-domain classification , 1999, Optics & Photonics.

[22]  Justin K. Romberg,et al.  Bayesian tree-structured image modeling using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[23]  Yoram Singer,et al.  Batch and On-Line Parameter Estimation of Gaussian Mixtures Based on the Joint Entropy , 1998, NIPS.

[24]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[25]  M. Do Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov models , 2003, IEEE Signal Processing Letters.

[26]  L. R. Rabiner,et al.  A probabilistic distance measure for hidden Markov models , 1985, AT&T Technical Journal.

[27]  Hyeokho Choi Image Segmentation Using Wavelet-domain Classiication , 1999 .

[28]  Nuno Vasconcelos,et al.  A unifying view of image similarity , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[29]  C.-C. Jay Kuo,et al.  Texture analysis and classification with tree-structured wavelet transform , 1993, IEEE Trans. Image Process..

[30]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[31]  B. S. Manjunath,et al.  Rotation-invariant texture classification using a complete space-frequency model , 1999, IEEE Trans. Image Process..

[32]  Pietro Perona,et al.  Rotation invariant texture recognition using a steerable pyramid , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[33]  Wen-Rong Wu,et al.  Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model , 1996, IEEE Trans. Image Process..

[34]  William T. Freeman,et al.  Presented at: 2nd Annual IEEE International Conference on Image , 1995 .

[35]  Shih-Fu Chang,et al.  Transform features for texture classification and discrimination in large image databases , 1994, Proceedings of 1st International Conference on Image Processing.

[36]  Paul A. Viola,et al.  Texture recognition using a non-parametric multi-scale statistical model , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[37]  Eero P. Simoncelli,et al.  Texture characterization via joint statistics of wavelet coefficient magnitudes , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[38]  Minh N. Do,et al.  Texture similarity measurement using Kullback-Leibler distance on wavelet subbands , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).