Production of different molecular weight glycosaminoglycans with microbial cell factories

[1]  Zhen Kang,et al.  Advances and challenges in biotechnological production of chondroitin sulfate and its oligosaccharides. , 2023, International journal of biological macromolecules.

[2]  Han Yang,et al.  Engineering Escherichia coli Nissle 1917 as a microbial chassis for therapeutic and industrial applications. , 2023, Biotechnology advances.

[3]  Liming Liu,et al.  Protein engineering, cofactor engineering, and surface display engineering to achieve whole‐cell catalytic production of chondroitin sulfate A , 2023, Biotechnology and bioengineering.

[4]  Jiaping Wang,et al.  Multidimensional engineering of Escherichia coli for efficient biosynthesis of cis-3-hydroxypipecolic acid. , 2023, Bioresource technology.

[5]  C. Zhang,et al.  In Vitro Fermentation of Hyaluronan with Different Molecular Weights by Human Gut Microbiota: Differential Effects on Gut Microbiota Structure and Metabolic Function , 2023, Polymers.

[6]  Hao Cui,et al.  Characterization and expression of highly active recombinant human Glucuronyl C5-epimerase in mammalian cells. , 2023, Glycobiology.

[7]  Jian Chen,et al.  Construction of Osmotic Pressure Responsive Vacuole-like Bacterial Organelles with Capsular Polysaccharides as Building Blocks. , 2023, ACS synthetic biology.

[8]  Kiyoshi Suzuki,et al.  Simultaneous production of N-acetylheparosan and recombinant chondroitin using gene-engineered Escherichia coli K5. , 2023, Heliyon.

[9]  Hafiz M.N. Iqbal,et al.  Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects. , 2023, Advances in colloid and interface science.

[10]  Y. Ni,et al.  Efficient production of hyaluronic acid by Streptococcus zooepidemicus using two-stage semi-continuous fermentation , 2023, Bioresource Technology.

[11]  Xiao-Xia Xia,et al.  Synthetic biology-guided design and biosynthesis of protein polymers for delivery. , 2023, Advanced drug delivery reviews.

[12]  Shun-Fa Yang,et al.  Different Molecular Weights of Hyaluronan Research in Knee Osteoarthritis: A State-of-the-Art Review. , 2023, Matrix biology : journal of the International Society for Matrix Biology.

[13]  Bo Peng,et al.  Advances in Escherichia coli Nissle 1917 as a customizable drug delivery system for disease treatment and diagnosis strategies , 2023, Materials today. Bio.

[14]  R. Weusthuis,et al.  Growth-coupled enzyme engineering through manipulation of redox cofactor regeneration. , 2023, Biotechnology advances.

[15]  Xueqin Lv,et al.  Genetically encoded biosensors for microbial synthetic biology: From conceptual frameworks to practical applications. , 2023, Biotechnology advances.

[16]  S. Sivaprakasam,et al.  Metabolic Engineering Of Lactococcus Lactis For The Production Of Heparosan , 2022, bioRxiv.

[17]  R. Apetrei,et al.  Highly sensitive detection of glucose via glucose oxidase immobilization onto conducting polymer-coated composite polyacrylonitrile nanofibers. , 2022, Enzyme and microbial technology.

[18]  Liming Liu,et al.  Microbial synthesis of glycosaminoglycans and their oligosaccharides. , 2022, Trends in microbiology.

[19]  Longjiao Zhu,et al.  High content design of riboswitch biosensors: All-around rational module-by-module design. , 2022, Biosensors & bioelectronics.

[20]  M. Garvey Non-Mammalian Eukaryotic Expression Systems Yeast and Fungi in the Production of Biologics , 2022, Journal of fungi.

[21]  G. Du,et al.  Enzymatic Production of Low-Molecular-Weight Hyaluronan and Its Oligosaccharides: A Review and Prospects. , 2022, Journal of agricultural and food chemistry.

[22]  K. Makabe,et al.  Mutational analysis of the effects of N-glycosylation sites on the activity and thermal stability of rutinosidase from Aspergillus oryzae. , 2022, Enzyme and microbial technology.

[23]  N. Gorret,et al.  Co-expression of an isopropanol synthetic operon and eGFP to monitor the robustness of Cupriavidus necator during isopropanol production. , 2022, Enzyme and microbial technology.

[24]  G. Du,et al.  Enzymatic Production of Chondroitin Oligosaccharides and Its Sulfate Derivatives , 2022, Frontiers in Bioengineering and Biotechnology.

[25]  R. Linhardt,et al.  Chondroitin Sulfate and Its Derivatives: A Review of Microbial and Other Production Methods , 2022, Fermentation.

[26]  Jian Chen,et al.  Biosynthesis of non-sulfated high-molecular-weight glycosaminoglycans and specific-sized oligosaccharides. , 2022, Carbohydrate polymers.

[27]  Isabel Oroz‐Guinea,et al.  Design and biocatalytic applications of genetically fused multifunctional enzymes. , 2022, Biotechnology advances.

[28]  Khosrow Khalifeh,et al.  Comparing similar versions of a connecting helix on the structure of Chondroitinase ABC I. , 2022, Enzyme and microbial technology.

[29]  Zhen Kang,et al.  Engineering the probiotic bacterium Escherichia coli Nissle 1917 as an efficient cell factory for heparosan biosynthesis. , 2022, Enzyme and microbial technology.

[30]  E. Pardon,et al.  Structure, substrate recognition and initiation of hyaluronan synthase , 2022, Nature.

[31]  Andressa Rossatto,et al.  Hyaluronic acid production and purification techniques: a review , 2022, Preparative biochemistry & biotechnology.

[32]  G. Walsh,et al.  Production, characteristics and applications of microbial heparinases. , 2022, Biochimie.

[33]  R. Linhardt,et al.  Chemobiocatalytic Synthesis of a Low-Molecular-Weight Heparin. , 2022, ACS chemical biology.

[34]  Sha Li,et al.  Design and construction of a Bacillus amyloliquefaciens cell factory for hyaluronic acid synthesis from Jerusalem artichoke inulin. , 2022, International journal of biological macromolecules.

[35]  L. Rodrigues,et al.  Heterologous production of chondroitin , 2022, Biotechnology reports.

[36]  Huimin Yu,et al.  Indirect Pathway Metabolic Engineering Strategies for Enhanced Biosynthesis of Hyaluronic Acid in Engineered Corynebacterium glutamicum , 2021, Frontiers in Bioengineering and Biotechnology.

[37]  Wengong Yu,et al.  Cloning, expression, and characterization of a glycosaminoglycan lyase from Vibrio sp. H240. , 2021, Enzyme and microbial technology.

[38]  K. Pagel,et al.  State-of-the-art glycosaminoglycan characterization. , 2021, Mass spectrometry reviews.

[39]  G. Miller,et al.  Developments in the Chemical Synthesis of Heparin and Heparan Sulfate , 2021, Chemical record.

[40]  Jianghua Li,et al.  Closed-Loop System Driven by ADP Phosphorylation from Pyrophosphate Affords Equimolar Transformation of ATP to 3′-Phosphoadenosine-5′-phosphosulfate , 2021, ACS Catalysis.

[41]  Zhenghong Xu,et al.  Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. , 2021, Carbohydrate polymers.

[42]  Xianxuan Zhou,et al.  The construction of a dual-functional strain that produces both polysaccharides and sulfotransferases , 2021, Biotechnology Letters.

[43]  L. Elling,et al.  Repetitive Synthesis of High‐Molecular‐Weight Hyaluronic Acid with Immobilized Enzyme Cascades , 2021, ChemSusChem.

[44]  Ye-Wang Zhang,et al.  A novel chondroitin AC lyase from Pedobacter xixiisoli: Cloning, expression, characterization and the application in the preparation of oligosaccharides. , 2021, Enzyme and microbial technology.

[45]  S. S. Veiga,et al.  Production of a novel recombinant brown spider hyaluronidase in baculovirus-infected insect cells. , 2021, Enzyme and microbial technology.

[46]  S. Sivaprakasam,et al.  Application of Dual Promoter Expression System for the Enhanced Heparosan Production in Bacillus megaterium , 2021, Applied Biochemistry and Biotechnology.

[47]  R. Linhardt,et al.  Complete biosynthesis of a sulfated chondroitin in Escherichia coli , 2021, Nature Communications.

[48]  Z. Wang,et al.  Cloning and characterization of two chondroitin sulfate ABC lyases from Edwardsiella tarda LMG2793. , 2021, Enzyme and microbial technology.

[49]  R. Linhardt,et al.  High density fermentation of probiotic E. coli Nissle 1917 towards heparosan production, characterization, and modification , 2021, Applied Microbiology and Biotechnology.

[50]  M. Hulett,et al.  Heparanase and the hallmarks of cancer , 2020, Journal of Translational Medicine.

[51]  Jianghua Li,et al.  Optimizing the sulfation-modification system for scale preparation of chondroitin sulfate A. , 2020, Carbohydrate polymers.

[52]  Y. Saijoh,et al.  Metabolic engineering of non-pathogenic Escherichia coli strains for the controlled production of low molecular weight heparosan and size-specific heparosan oligosaccharides. , 2020, Biochimica et biophysica acta. General subjects.

[53]  Huimin Yu,et al.  Enhancing single-cell hyaluronic acid biosynthesis by microbial morphology engineering , 2020, Synthetic and systems biotechnology.

[54]  T. Ma,et al.  Temperature-controlled molecular weight of hyaluronic acid produced by engineered Bacillus subtilis , 2020, Biotechnology letters.

[55]  M. Cammarota,et al.  Production and purification of higher molecular weight chondroitin by metabolically engineered Escherichia coli K4 strains , 2020, Scientific Reports.

[56]  Shuangsheng Guo,et al.  Preparation of low-molecular-weight chondroitin sulfates by complex enzyme hydrolysis and their antioxidant activities. , 2020, Carbohydrate polymers.

[57]  Tianmeng Zhang,et al.  Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum , 2020, Nature Communications.

[58]  Jianghua Li,et al.  Engineering the heparin-binding pocket to enhance the catalytic efficiency of a thermostable heparinase III from Bacteroides thetaiotaomicron. , 2020, Enzyme and microbial technology.

[59]  S. Sivaprakasam,et al.  Production and characterization of low molecular weight heparosan in Bacillus megaterium using Escherichia coli K5 glycosyltransferases. , 2020, International journal of biological macromolecules.

[60]  P. Heldin,et al.  Intracellular hyaluronan: Importance for cellular functions. , 2020, Seminars in cancer biology.

[61]  G. Du,et al.  Construction of saturated odd- and even-numbered hyaluronan oligosaccharide building block library. , 2020, Carbohydrate polymers.

[62]  S. Sivaprakasam,et al.  Deciphering the role of dissolved oxygen and N-acetyl glucosamine in governing higher molecular weight hyaluronic acid synthesis in Streptococcus zooepidemicus cell factory , 2020, Applied Microbiology and Biotechnology.

[63]  Ting Wang,et al.  Chemoenzymatic synthesis of ultralow and low-molecular weight heparins. , 2020, Biochimica et biophysica acta. Proteins and proteomics.

[64]  Jian Chen,et al.  High-level constitutive expression of leech hyaluronidase with combined strategies in recombinant Pichia pastoris , 2020, Applied Microbiology and Biotechnology.

[65]  Jianghua Li,et al.  Secretory expression of biologically active chondroitinase ABC I for production of chondroitin sulfate oligosaccharides. , 2019, Carbohydrate polymers.

[66]  R. Linhardt,et al.  Chemoenzymatic Synthesis of Glycosaminoglycans. , 2019, Accounts of chemical research.

[67]  L. Elling,et al.  Key Factors for a One-Pot Enzyme Cascade Synthesis of High Molecular Weight Hyaluronic Acid , 2019, International journal of molecular sciences.

[68]  R. Linhardt,et al.  Increased 3'-phosphoadenosine-5'-phosphosulfate levels in engineered Escherichia coli cell lysate facilitates in vitro synthesis of Chondroitin Sulfate A. , 2019, Biotechnology journal.

[69]  Huimin Yu,et al.  Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid. , 2019, Metabolic engineering.

[70]  C. Collins,et al.  Metabolic engineering of Bacillus megaterium for heparosan biosynthesis using Pasteurella multocida heparosan synthase, PmHS2 , 2019, Microbial cell factories.

[71]  A. S. Erenler Capsular Polysaccharide Biosynthesis from Recombinant E. coli and Chondroitin Sülfate Production. , 2019, Cellular and molecular biology.

[72]  Haw-Ming Huang,et al.  Gamma-Irradiation-Prepared Low Molecular Weight Hyaluronic Acid Promotes Skin Wound Healing , 2019, Polymers.

[73]  N. Volpi Chondroitin Sulfate Safety and Quality , 2019, Molecules.

[74]  Huimin Yu,et al.  Biosynthesis of Chondroitin in Engineered Corynebacterium glutamicum. , 2019, Journal of microbiology and biotechnology.

[75]  A. Barr,et al.  Heparan sulfates are critical regulators of the inhibitory megakaryocyte-platelet receptor G6b-B , 2019, bioRxiv.

[76]  Yinjie J. Tang,et al.  Metabolic engineering of cyanobacteria for photoautotrophic production of heparosan, a pharmaceutical precursor of heparin , 2019, Algal Research.

[77]  Jianfeng Mei,et al.  A simple method for the production of low molecular weight hyaluronan by in situ degradation in fermentation broth , 2019, e-Polymers.

[78]  O. F. Restaino,et al.  Microbial production and metabolic engineering of chondroitin and chondroitin sulfate. , 2018, Emerging topics in life sciences.

[79]  R. Linhardt,et al.  The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. , 2018, Current opinion in biotechnology.

[80]  R. Linhardt,et al.  Metabolic engineering of capsular polysaccharides. , 2018, Emerging topics in life sciences.

[81]  S. Sharfstein,et al.  Metabolic engineering of mammalian cells to produce heparan sulfates. , 2018, Emerging topics in life sciences.

[82]  Jian Chen,et al.  Bio-Based Strategies for Producing Glycosaminoglycans and Their Oligosaccharides. , 2018, Trends in biotechnology.

[83]  M. Davari,et al.  Directed Evolution of Hyaluronic Acid Synthase from Pasteurella multocida towards High‐Molecular‐Weight Hyaluronic Acid , 2018, Chembiochem : a European journal of chemical biology.

[84]  Chi-Huey Wong,et al.  Programmable one-pot synthesis of heparin pentasaccharides enabling access to regiodefined sulfate derivatives† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc01743c , 2018, Chemical science.

[85]  Jian Chen,et al.  A microbial–enzymatic strategy for producing chondroitin sulfate glycosaminoglycans , 2018, Biotechnology and bioengineering.

[86]  E. Papoutsakis,et al.  Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. , 2018, Current opinion in biotechnology.

[87]  Y. Tokudome,et al.  A new strategy for the passive skin delivery of nanoparticulate, high molecular weight hyaluronic acid prepared by a polyion complex method , 2018, Scientific Reports.

[88]  M. Moo-young,et al.  Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis , 2018, Biotechnology and bioengineering.

[89]  A. Almond,et al.  Heparosan-coated liposomes for drug delivery , 2017, Glycobiology.

[90]  Fengshan Wang,et al.  Recent advances in polysaccharides for osteoarthritis therapy. , 2017, European journal of medicinal chemistry.

[91]  Jian Liu,et al.  Enzymatic Synthesis of Homogeneous Chondroitin Sulfate Oligosaccharides. , 2017, Angewandte Chemie.

[92]  Huimin Yu,et al.  Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation , 2017, Biotechnology journal.

[93]  B. Priem,et al.  Chemo-bacterial synthesis of conjugatable glycosaminoglycans. , 2017, Carbohydrate polymers.

[94]  M. Rasaee,et al.  Improved Yield of High Molecular Weight Hyaluronic Acid Production in a Stable Strain of Streptococcus zooepidemicus via the Elimination of the Hyaluronidase-Encoding Gene , 2017, Molecular Biotechnology.

[95]  Hyun Ji Lee,et al.  Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. , 2017, Carbohydrate polymers.

[96]  O. F. Restaino,et al.  Engineering S. equi subsp. zooepidemicus towards concurrent production of hyaluronic acid and chondroitin biopolymers of biomedical interest , 2017, AMB Express.

[97]  G. Stephanopoulos,et al.  Key Role of the Carboxyl Terminus of Hyaluronan Synthase in Processive Synthesis and Size Control of Hyaluronic Acid Polymers. , 2017, Biomacromolecules.

[98]  Xiangdong Gao,et al.  Metabolic engineering of Bacillus subtilis for biosynthesis of heparosan using heparosan synthase from Pasteurella multocida, PmHS1 , 2017, Bioprocess and Biosystems Engineering.

[99]  Lixia Fu,et al.  Construction of efficient Streptococcus zooepidemicus strains for hyaluoronic acid production based on identification of key genes involved in sucrose metabolism , 2016, AMB Express.

[100]  M. Lord,et al.  Bioengineered human heparin with anticoagulant activity. , 2016, Metabolic engineering.

[101]  Preeti Singh,et al.  Heparanase: From basic research to therapeutic applications in cancer and inflammation. , 2016, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[102]  G. Zhu,et al.  Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application , 2016, Applied Microbiology and Biotechnology.

[103]  G. Du,et al.  Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis , 2016, Biotechnology Letters.

[104]  B. Priem,et al.  Chaperone-assisted expression of KfiC glucuronyltransferase from Escherichia coli K5 leads to heparosan production in Escherichia coli BL21 in absence of the stabilisator KfiB , 2016, Applied Microbiology and Biotechnology.

[105]  U. Schepers,et al.  Chemical Synthesis of Glycosaminoglycans. , 2016, Chemical reviews.

[106]  Sanjay K. Jain,et al.  Chondroitin sulphate: a focus on osteoarthritis , 2016, Glycoconjugate Journal.

[107]  Guocheng Du,et al.  Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. , 2016, Metabolic engineering.

[108]  Jian Chen,et al.  Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. , 2016, Carbohydrate polymers.

[109]  R. Linhardt,et al.  Bioengineered heparins and heparan sulfates. , 2016, Advanced drug delivery reviews.

[110]  P. Noble,et al.  Hyaluronan as a therapeutic target in human diseases. , 2016, Advanced drug delivery reviews.

[111]  Liping Zhao,et al.  Cyclic AMP (cAMP) Receptor Protein-cAMP Complex Regulates Heparosan Production in Escherichia coli Strain Nissle 1917 , 2015, Applied and Environmental Microbiology.

[112]  S. Gorfien,et al.  Optimization of bioprocess conditions improves production of a CHO cell-derived, bioengineered heparin. , 2015, Biotechnology journal.

[113]  L. Ambrosio,et al.  Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration. , 2015, Acta biomaterialia.

[114]  R. Linhardt,et al.  Combinatorial one-pot chemoenzymatic synthesis of heparin. , 2015, Carbohydrate polymers.

[115]  Shashi Bala Prasad,et al.  Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis , 2014, Biotechnology journal.

[116]  W. Shim,et al.  Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. , 2014, Journal of biotechnology.

[117]  K. Ramachandran,et al.  The P170 expression system enhances hyaluronan molecular weight and production in metabolically-engineered Lactococcus lactis , 2014 .

[118]  K. Ramachandran,et al.  Ratio of intracellular precursors concentration and their flux influences hyaluronic acid molecular weight in Streptococcus zooepidemicus and recombinant Lactococcus lactis. , 2014, Bioresource technology.

[119]  L. Nielsen,et al.  Insight into hyaluronic acid molecular weight control , 2014, Applied Microbiology and Biotechnology.

[120]  Liming Liu,et al.  KfoE encodes a fructosyltransferase involved in capsular polysaccharide biosynthesis in Escherichia coli K4 , 2014, Biotechnology Letters.

[121]  Jian Chen,et al.  High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers , 2014, Scientific Reports.

[122]  Jian Chen,et al.  Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology , 2014, Applied Microbiology and Biotechnology.

[123]  L. Nielsen,et al.  The Role of Hyaluronic Acid Precursor Concentrations in Molecular Weight Control in Streptococcus zooepidemicus , 2014, Molecular Biotechnology.

[124]  Yanhong Li,et al.  Donor substrate promiscuity of the N-acetylglucosaminyltransferase activities of Pasteurella multocida heparosan synthase 2 (PmHS2) and Escherichia coli K5 KfiA , 2014, Applied Microbiology and Biotechnology.

[125]  C. Whitfield,et al.  KpsC and KpsS are retaining 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) transferases involved in synthesis of bacterial capsules , 2013, Proceedings of the National Academy of Sciences.

[126]  R. Linhardt,et al.  Bioengineered Chinese Hamster Ovary Cells with Golgi-targeted 3-O-Sulfotransferase-1 Biosynthesize Heparan Sulfate with an Antithrombin-binding Site* , 2013, The Journal of Biological Chemistry.

[127]  H. Kitagawa,et al.  Biosynthesis and function of chondroitin sulfate. , 2013, Biochimica et biophysica acta.

[128]  R. Linhardt,et al.  Effect of eliminase gene (elmA) deletion on heparosan production and shedding in Escherichia coli K5. , 2013, Journal of biotechnology.

[129]  M. de Rosa,et al.  Homologous overexpression of rfaH in E. coli K4 improves the production of chondroitin-like capsular polysaccharide , 2013, Microbial Cell Factories.

[130]  G. Eggink,et al.  Production methods for heparosan, a precursor of heparin and heparan sulfate. , 2013, Carbohydrate polymers.

[131]  Xiangdong Gao,et al.  Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. , 2013, Bioresource technology.

[132]  B. Baggenstoss,et al.  Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines. , 2012, Glycobiology.

[133]  B. Priem,et al.  Production of intracellular heparosan and derived oligosaccharides by lyase expression in metabolically engineered E. coli K-12. , 2012, Carbohydrate research.

[134]  Long Liu,et al.  Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor. , 2012, Metabolic engineering.

[135]  R. Rahim,et al.  Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed. , 2012, Journal of bioscience and bioengineering.

[136]  J. Couchman,et al.  Heparan Sulfate Biosynthesis , 2012, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[137]  R. Linhardt,et al.  Toward a bioengineered heparin , 2012, Bioengineered.

[138]  Yongmei Xu,et al.  Chemoenzymatic synthesis of heparan sulfate and heparin. , 2014, Natural product reports.

[139]  P. DeAngelis Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow , 2012, Applied Microbiology and Biotechnology.

[140]  C. Glass,et al.  Metabolic engineering of Chinese hamster ovary cells: towards a bioengineered heparin. , 2012, Metabolic engineering.

[141]  Long Liu,et al.  Effects of carbon sources and feeding strategies on heparosan production by Escherichia coli K5 , 2012, Bioprocess and Biosystems Engineering.

[142]  S. Mousa,et al.  Chemoenzymatic Synthesis of Homogeneous Ultralow Molecular Weight Heparins , 2011, Science.

[143]  Jian Liu,et al.  Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3'-phosphoadenosine-5'-phosphosulfate. , 2011, Glycobiology.

[144]  R. Linhardt,et al.  E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor , 2010, Biotechnology and bioengineering.

[145]  M. de Rosa,et al.  Isolation of an Escherichia coli K4 kfoC mutant over-producing capsular chondroitin , 2010, Microbial cell factories.

[146]  M. H. Santana,et al.  Metabolic Effects of the Initial Glucose Concentration on Microbial Production of Hyaluronic Acid , 2010, Applied biochemistry and biotechnology.

[147]  W. Tan,et al.  Mechanism for the effect of agitation on the molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. , 2010 .

[148]  M. de Rosa,et al.  Production of capsular polysaccharide from Escherichia coli K4 for biotechnological applications , 2010, Applied Microbiology and Biotechnology.

[149]  L. Nielsen,et al.  Hyaluronan Molecular Weight Is Controlled by UDP-N-acetylglucosamine Concentration in Streptococcus zooepidemicus* , 2009, The Journal of Biological Chemistry.

[150]  W. Tan,et al.  Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. , 2009, Journal of microbiology and biotechnology.

[151]  Long Liu,et al.  Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcuszooepidemicus. , 2008, Food chemistry.

[152]  R. Langer,et al.  Contaminated heparin associated with adverse clinical events and activation of the contact system. , 2008, The New England journal of medicine.

[153]  Robert Langer,et al.  Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events , 2008, Nature Biotechnology.

[154]  J. Hirabayashi,et al.  Sequential synthesis of chondroitin oligosaccharides by immobilized chondroitin polymerase mutants , 2008, Glycoconjugate Journal.

[155]  B. Baggenstoss,et al.  Mutation of Two Intramembrane Polar Residues Conserved within the Hyaluronan Synthase Family Alters Hyaluronan Product Size* , 2006, Journal of Biological Chemistry.

[156]  C. V. van Boeckel,et al.  A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? , 2004, Angewandte Chemie.

[157]  K. Kimata,et al.  Mammalian Hyaluronan Synthases , 2002, IUBMB life.

[158]  R. Sasisekharan,et al.  Heparin and heparan sulfate: biosynthesis, structure and function. , 2000, Current opinion in chemical biology.

[159]  N. Cook,et al.  Identification that KfiA, a protein essential for the biosynthesis of the Escherichia coli K5 capsular polysaccharide, is an alpha -UDP-GlcNAc glycosyltransferase. The formation of a membrane-associated K5 biosynthetic complex requires KfiA, KfiB, and KfiC. , 2000, The Journal of biological chemistry.

[160]  J. Herbert,et al.  Synthesis of thrombin-inhibiting heparin mimetics without side effects , 1999, Nature.

[161]  P. Weigel,et al.  Kinetic Characterization of the Recombinant Hyaluronan Synthases from Streptococcus pyogenes and Streptococcus equisimilis * , 1999, The Journal of Biological Chemistry.

[162]  M. Tammi,et al.  Hyaluronan Synthases* , 1997, The Journal of Biological Chemistry.

[163]  F. Molinari,et al.  Production and purification of an extracellularly produced K4 polysaccharide from Escherichia coli , 1996, Biotechnology Letters.

[164]  A. Oeggerli,et al.  Effect of pH, agitation and aeration on hyaluronic acid production byStreptococcus zooepidemicus , 1994, Biotechnology Letters.

[165]  P. Weigel,et al.  Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria. , 1993, The Journal of biological chemistry.

[166]  K. Austen,et al.  Recent advances in the cellular and molecular biology of mast cells. , 1989, Immunology today.

[167]  Jianghua Li,et al.  Synthesis of bioengineered heparin by recombinant yeast Pichia pastoris , 2022, Green Chemistry.

[168]  Jianghua Li,et al.  Biosynthesis of non-animal chondroitin sulfate from methanol using genetically engineered Pichia pastoris , 2021, Green Chemistry.

[169]  R. Linhardt,et al.  Production of chondroitin in metabolically engineered E. coli. , 2015, Metabolic engineering.

[170]  G. Stephanopoulos,et al.  Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. , 2008, Metabolic engineering.

[171]  L. Blank,et al.  Microbial hyaluronic acid production , 2004, Applied Microbiology and Biotechnology.