Supercontinuum generation in submicrometer diameter silica fibers.

Silica nanowires provide strong mode confinement in a cylindrical silica-core/air-cladding geometry and serve a model system for studying nonlinear propagation of short optical pulses inside fibers. We report on the fiber diameter dependence of the supercontinuum generated by femtosecond laser pulses in silica fiber tapers with average diameters in the range of 200 nm to 1200 nm. We observe a strong diameter-dependence of the spectral broadening, which can be attributed to the fiber's diameter-dependent dispersion and nonlinearity. The short interaction length (less than 20 mm) and the low energy threshold for supercontinuum generation (about 1 nJ) make tapered fibers with diameters between 400 nm and 800 nm an ideal source of coherent white-light source in nanophotonics.

[1]  Benjamin J. Eggleton,et al.  Air-hole collapse and mode transitions in microstructured fiber photonic wires , 2005 .

[2]  A. Hale,et al.  Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer. , 2004, Optics express.

[3]  Paul Steinvurzel,et al.  Microstructured optical fiber photonic wires with subwavelength core diameter. , 2004, Optics express.

[4]  Ilaria Cristiani,et al.  Blue light and infrared continuum generation by soliton fission in a microstructured fiber , 2003 .

[5]  Limin Tong,et al.  Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. , 2004, Optics express.

[6]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[7]  T A Birks,et al.  Supercontinuum generation in tapered fibers. , 2002, Optics letters.

[8]  William J. Wadsworth,et al.  Supercontinuum generation in tapered fibers. , 2000, Optics letters.

[9]  L. Provino,et al.  Compact broadband continuum source based on microchip laser pumped microstructured fibre , 2001 .

[10]  M. Izutsu,et al.  Soliton induced supercontinuum generation in photonic crystal fiber , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Dongjoo Lee,et al.  Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation , 2005 .

[12]  Alexander Gaeta,et al.  Ultra-low threshold supercontinuum generation in sub-wavelength waveguides. , 2004, Optics express.

[13]  Limin Tong,et al.  Subwavelength-diameter silica wires for low-loss optical wave guiding , 2003, Nature.

[14]  G I Stegeman,et al.  Enhanced self-phase modulation in tapered fibers. , 1993, Optics letters.

[15]  H. Giessen,et al.  Characteristics of supercontinuum generationin tapered fibers using femtosecond laser pulses , 2003 .

[16]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding: errata. , 1997, Optics letters.

[17]  L. Provino,et al.  Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping , 2002 .

[18]  S. Leon-Saval,et al.  Supercontinuum generation in submicron fibre waveguides. , 2004, Optics express.

[19]  Ilaria Cristiani,et al.  Dispersive wave generation by solitons in microstructured optical fibers. , 2004, Optics express.

[20]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[21]  Wayne H. Knox,et al.  Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers , 2006 .

[22]  G Korn,et al.  Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. , 2002, Physical review letters.

[23]  Alexander Gaeta,et al.  Optimal waveguide dimensions for nonlinear interactions. , 2004, Optics express.

[24]  R. Leonhardt,et al.  Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers , 2002 .

[25]  Limin Tong,et al.  Self-modulated taper drawing of silica nanowires , 2005 .

[26]  Gilberto Brambilla,et al.  Ultra-low-loss optical fiber nanotapers. , 2004, Optics express.