Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications

We customized a combination of cathode, anode, and electrolyte to develop an LMB capable of cycling both at a high loading capacity and at a high current density that satisfy the capacity and charging rate requirements for future electric vehicles.

[1]  Chong Seung Yoon,et al.  Compositionally Graded Cathode Material with Long‐Term Cycling Stability for Electric Vehicles Application , 2016 .

[2]  K. Amine,et al.  Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries , 2018, Nature Nanotechnology.

[3]  B. Lucht,et al.  Examining the Solid Electrolyte Interphase on Binder-Free Graphite Electrodes , 2009 .

[4]  M. Winter,et al.  Blends of lithium bis(oxalato)borate and lithium tetrafluoroborate: Useful substitutes for lithium difluoro(oxalato)borate in electrolytes for lithium metal based secondary batteries? , 2013 .

[5]  Ji‐Guang Zhang,et al.  Dendrite‐Free and Performance‐Enhanced Lithium Metal Batteries through Optimizing Solvent Compositions and Adding Combinational Additives , 2018 .

[6]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[7]  Yu-Guo Guo,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[8]  A. Bhatt,et al.  Stabilizing lithium metal using ionic liquids for long-lived batteries , 2016, Nature Communications.

[9]  D. Aurbach,et al.  High-Performance Cells Containing Lithium Metal Anodes, LiNi0.6Co0.2Mn0.2O2 (NCM 622) Cathodes, and Fluoroethylene Carbonate-Based Electrolyte Solution with Practical Loading. , 2018, ACS applied materials & interfaces.

[10]  M. Winter,et al.  Lithium‐Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium‐Metal Batteries , 2017 .

[11]  Terence B. Hook,et al.  Power and Technology Scaling into the 5 nm Node with Stacked Nanosheets , 2017 .

[12]  Chong Seung Yoon,et al.  Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? , 2018 .

[13]  Ji‐Guang Zhang,et al.  Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes , 2017 .

[14]  Martin Z. Bazant,et al.  Transition of lithium growth mechanisms in liquid electrolytes , 2016 .

[15]  Yang Zhao,et al.  In Situ Li3PS4 Solid‐State Electrolyte Protection Layers for Superior Long‐Life and High‐Rate Lithium‐Metal Anodes , 2018, Advanced materials.

[16]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[17]  D. J. Lee,et al.  Sustainable Redox Mediation for Lithium–Oxygen Batteries by a Composite Protective Layer on the Lithium‐Metal Anode , 2016, Advanced materials.

[18]  B. Lucht,et al.  Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI , 2018 .

[19]  Feiyu Kang,et al.  Two-Dimensional Materials for Thermal Management Applications , 2018 .

[20]  Jianming Zheng,et al.  Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries , 2017 .

[21]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[22]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[23]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[24]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[25]  Shu Gao,et al.  Poly(vinylidene fluoride)-based hybrid gel polymer electrolytes for additive-free lithium sulfur batteries , 2017 .

[26]  Chong Yan,et al.  Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries , 2017 .

[27]  Chong Seung Yoon,et al.  Novel Cathode Materials for Na‐Ion Batteries Composed of Spoke‐Like Nanorods of Na[Ni0.61Co0.12Mn0.27]O2 Assembled in Spherical Secondary Particles , 2016 .

[28]  Bruno Scrosati,et al.  A New Class of Advanced Polymer Electrolytes and Their Relevance in Plastic‐like, Rechargeable Lithium Batteries , 1996 .

[29]  Jianming Zheng,et al.  Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries , 2018 .

[30]  Zhaoping Liu,et al.  Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase , 2017, ACS omega.

[31]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[32]  Hun‐Gi Jung,et al.  Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. , 2018, ACS applied materials & interfaces.

[33]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[34]  B. Scrosati,et al.  Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries , 2016 .

[35]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[36]  Qian Sun,et al.  Robust Metallic Lithium Anode Protection by the Molecular‐Layer‐Deposition Technique , 2018 .

[37]  Xin-Bing Cheng,et al.  Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries , 2017 .

[38]  Allen Pei,et al.  Lithium metal stripping beneath the solid electrolyte interphase , 2018, Proceedings of the National Academy of Sciences.

[39]  Shizhao Xiong,et al.  Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries , 2012 .

[40]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[41]  Xiaoting Lin,et al.  A Novel Organic “Polyurea” Thin Film for Ultralong‐Life Lithium‐Metal Anodes via Molecular‐Layer Deposition , 2018, Advanced materials.