On the largest eigenvalue of Wishart matrices with identity covariance when n, p and p/n tend to infinity
暂无分享,去创建一个
[1] F. W. J. Olver,et al. Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders , 1959 .
[2] T. W. Anderson. An Introduction to Multivariate Statistical Analysis , 1959 .
[3] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[4] F. Olver. Asymptotics and Special Functions , 1974 .
[5] F. Olver,et al. Second-order linear differential equations with two turning points , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[6] F. W. J. Olver,et al. Whittaker functions with both parameters large: uniform approximations in terms of parabolic cylinder functions , 1980, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[7] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[8] Nico M. Temme,et al. Asymptotic estimates for Laguerre polynomials , 1990 .
[9] C. Tracy,et al. Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.
[10] C. Tracy,et al. Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .
[11] Craig A. Tracy,et al. Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .
[12] Harold Widom,et al. On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles , 1999 .
[13] J. Bouchaud,et al. Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.
[14] A. Soshnikov. Determinantal random point fields , 2000, math/0002099.
[15] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[16] A. Soshnikov. A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.
[17] Werner Dubitzky,et al. A Practical Approach to Microarray Data Analysis , 2003, Springer US.
[18] P. Bickel,et al. Some theory for Fisher''s linear discriminant function , 2004 .